Carbonatization of Serpentinites of the Mid-Atlantic Ridge: 1. Geochemical Trends and Mineral Assemblages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abyssal peridotite outcrops compose vast areas of the ocean floor in the Abyssal peridotite outcrops compose vast areas of the ocean floor in the Atlantic, Indian, and Arctic Oceans, where they are an indispensable part of the structure of the oceanic crust section formed in low-velocity oceanic spreading centers. The final stage in the evolution of abyssal peridotites in the oceanic crust is their carbonatization, which they undergo on the surface of the ocean floor or near it. The main goal of this study was reconstruction of the geochemical trends accompanying the carbonatization of abyssal peridotites using the example of MAR ultramafic rocks and to identify the main factors that determine their geochemical and mineralogical differences. It is shown that variations in the composition of rock-forming minerals and their characteristic assemblages indicate that the initial stages of carbonatization of abyssal peridotites occur in intra-crustal conditions simultaneously with the serpentinization of these rocks. The final stage in the crustal evolution of abyssal peridotites is their exposure to the surface of the ocean floor, to which they are transported along the detachment faults. Here, abyssal peridotites in close association with gabbro form oceanic core complexes, and the degree of their carbonatization sharply increases with the duration of their exposure on the surface of the ocean floor. The presented data made it possible to qualitatively reconstruct the sequence of events that determined the mineralogical and geochemical features of carbonatized abyssal peridotites of the MAR.

About the authors

S. A. Silantyev

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Author for correspondence.
Email: silantyev@geokhi.ru
Russia, Moscow

E. A. Krasnova

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS; Moscow Lomonosov State University, Geosciences Department

Email: silantyev@geokhi.ru
Russia, Moscow; Russia, Moscow

D. D. Badyukov

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: silantyev@geokhi.ru
Russia, Moscow

A. V. Zhilkina

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: silantyev@geokhi.ru
Russia, Moscow

T. G. Kuzmina

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: silantyev@geokhi.ru
Russia, Moscow

A. S. Gryaznova

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: silantyev@geokhi.ru
Russia, Moscow

V. D. Sherbakov

Moscow Lomonosov State University, Geosciences Department

Email: silantyev@geokhi.ru
Russia, Moscow

References

  1. Дубинина Е.О., Бортников Н.С., Силантьев С.А. Отношение флюид/порода в процессах серпентинизации океанических ультраосновных пород, вмещающих гидротермальное поле Лост Сити, 30° c.ш., САХ // Петрология. 2015. Т. 23. № 6. С. 589–606.
  2. Дубинина Е.О., Крамчанинов А.Ю., Силантьев С.А., Бортников Н.С. Влияние скорости осаждения на изотопный состав (δ18О, δ13С и δ88Sr) карбонатов построек поля Лост Сити (Срединно-Атлантический хребет, 30° с.ш.) // Петрология. 2020. Т. 28. № 4. С. 413–430.
  3. Силантьев С.А. Вариации геохимических и изотопных характеристик реститовых перидотитов вдоль простирания Срединно-Атлантического хребта как отражение природы мантийных источников магматизма // Петрология. 2003. Т. 11. № 4. С. 339–362.
  4. Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: Нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
  5. Силантьев С.А., Новоселов А.А., Краснова Е.А. и др. Окварцевание перидотитов разломной зоны Стелмейт (северо-запад Тихого океана): реконструкция условий низкотемпературного выветривания и их тектоническая интерпретация // Петрология. 2012. Т. 20. № 1. С. 1–20.
  6. Силантьев С.А., Кубракова И.В., Тютюнник О.А. Характер распределения сидерофильных и халькофильных элементов в серпентинитах океанической литосферы как отражение магматической и внутрикоровой эволюции мантийного субстрата // Геохимия. 2016. № 12. С. 1059–1075.
  7. Силантьев С.А., Кубракова И.В., Портнягин М.В. и др. Ультрамафит-мафитовая ассоциация плутонических пород и роговообманковые сланцы хребтов Ширшова (Берингово море) и Стелмейт (Северо-Западная акватория Тихого океана): геодинамическая интерпретация геохимических данных // Петрология. 2018. Т. 26. № 5. С. 511–534.
  8. Andreani M., Mevel C., Boullier A.-M. et al. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites // Geochem. Geophys. Geosystems. 2007. V. 8. № 2. Q02012. https://doi.org/10.1029/2006GC001373
  9. Bach W., Rosner M., Jöns N. et al. Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: results from ODP Leg 209 // Earth Planet. Sci. Lett. 2011. V. 311. № 3–4. P. 242–252.
  10. Cannat M., Lagabrielle Y., Bougault H. et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15° N region // Tectonophysics. 1997. V. 279. P. 193–213.
  11. Da Costa I.R., Barriga F.J.A.S., Taylor R.N. Late seafloor carbonate precipitation in serpentinites from the Rainbow and Saldanha sites (Mid-Atlantic Ridge) // Eur. J. Mineral. 2008. V. 20. P. 173–181.
  12. Delacour A., Fruh-Green G.I., Bernasconi S.M. et al. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30° N, MAR) // Geochim. Cosmochim. Acta. 2008. V. 72. P. 3681–3702.
  13. Frisby C.P. Behavior of Rare Earth Elements and High-Field Strength Elements during Peridotite – Seawater Interaction: Ph. D. Thes. University of South Carolina, 2016. https://scholarcommons.sc.edu/etd/3530
  14. German C.R., Holliday B.P., Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea // Geochim. Cosmochim. Acta. 1991. V. 55. P. 3553–3558.
  15. Jöns N., Bach W., Klein F. Magmatic influence on reaction paths and element transport during serpentinization // Chemical Geol. 2010. V. 274. P. 196–211.
  16. Jöns N., Kahl W.A., Bach W. Reaction-induced porosity and onset of low-temperature carbonation in abyssal perido-tites: insights from 3D high-resolution microtomography // Lithos. 2017. V. 268–271. P. 274–284.
  17. Kelemen P.B., Matter J. In situ carbonation of peridotite for CO2 storage // PNAS. 2008. V. 105. № 45. P. 17295–17300.
  18. Kellermeier M., Glaab F., Klein R. et al. The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study // Nanoscale. 2013. V. 5. P. 7054–7065.
  19. Klein F., Humphris S.E., Bach W. Brucite formation and dissolution in oceanic serpentinite // Geochem. Perspectives Lett. 2020. V. 16. P. 1–5. https://doi.org/10.7185/geochemlet.2035
  20. Klein F., McCollom T.M. From serpentinization to carbonation: new insights from a CO2 injection experiment // Earth Planet. Sci. Lett. 2013. V. 379. P. 137–145.
  21. Kodolanyi J., Pettke T., Spandler C. et al. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones // J. Petrol. 2012. V. 53. № 2. P. 235–270.
  22. Kuebler K.E. A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 martian meteorite using Raman spectroscopy and electron microprobe analyses // J. Geophys. Res. Planets. 2013. V. 118. P. 803–830.
  23. Lacinska A.M., Styles M.T., BatemanK. et al. An Experimental study of the carbonation of serpentinite and partially serpentinised peridotites // Front. Earth Sci. 2017. https://doi.org/10.3389/feart.2017.00037
  24. Ludwig K.A., Kelley D.S., Butterfield D.A. et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field // Geochim. Cosmochim. Acta. 2006. V. 70. P. 3625–3645.
  25. Malvoisin B. Mass transfer in the oceanic lithosphere: serpentinization is not isochemical // Earth Planet. Sci. Lett. 2015. V. 430. P. 75–85.
  26. Milliken K.L., Morgan J.K. Chemical evidence for near seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899), Iberia Abyssal Plane // Eds. R.B. Whitmarsh, D.S. Sawyer, A. Klaus, D.G. Masson. Proceedings of the Ocean Drilling Program, Scientific Results. 1996. V. 149. P. 553–558.
  27. Paulick H., Bach W., Godard M. et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments // Chemical Geol. 2006. V. 234. P. 179–210.
  28. Picazo S., Malvoisin B., Baumgartner L., Bouvier A.-S. Low temperature serpentinite replacement by carbonates during seawater influx in the Newfoundland Margin // Minerals. 2020. V.10. Iss. 2. https://doi.org/10.3390/min10020184
  29. Salters V.J.M., Stracke A. Composition of the depleted mantle // Geochem. Geophys. Geosystems. 2004. V. 5. № 5. https://doi.org/10.1029/2003GC000597
  30. Sharp Z.D., Barnes J.D. Water soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones // Earth Planet. Sci. Lett. 2004. V. 226. P. 243–254.
  31. Styles M.T., Sanna A., Lacinska A.M. et al. The variation in composition of ultramafi c rocks and the effect on their suitability for carbon dioxide sequestration by mineralization following acid leaching // Greenhouse Gases: Science and Technology. 2014. V. 4. P. 440–451.
  32. Sulpis O., Agrawal1 P., Wolthers M. et al. Aragonite dissolution protects calcite at the seafloor // Nature Communications. 2022. V. 13. P. 1104. https://doi.org/10.1038/s41467-022-28711-z
  33. Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Magmatism in Ocean Basins. Eds. A.D. Saunders, M.J. Norry. Geol. Soc. Spec. Publ. London. 1989. V. 42. P. 313–345.
  34. Tostevin R., Shields G.A., Tarbuck G.M. et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings // Chemical Geol. 2016. V. 438. P. 146–162.
  35. Ulrich M., Munoz M., Guillot S. et al. Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite // Contrib. Mineral. Petrol. 2014. V. 167. P. 952. https://doi.org/10.1007/s00410-013-0952-8
  36. Yatabe A., Vanko D.A., Ghazi M. Petrography and chemical compositions of secondary calcite and aragonite in Juan de Fuca Ridge basalts altered at low temperature // Eds. A. Fisher, E.E. Davis, and C. Escutia. Proceedings of the Ocean Drilling Program, Sci. Res. 2000. V. 168. P. 137–148.

Supplementary files


Copyright (c) 2023 С.А. Силантьев, Е.А. Краснова, Д.Д. Бадюков, А.В. Жилкина, Т.Г. Кузьмина, А.С. Грязнова, В.Д. Щербаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies