Aegirine-Bearing Clinopyroxenes in Granulites from Xenoliths of the Udachnaya Kimberlite Pipe, Siberian Craton: Comparison of the Results of Mössbauer Spectroscopy and Electron Micropobe Analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aegirine end-member (NaFe3+Si2O6) in clinopyroxenes resulted from incorporation of Fe3+ into the mineral structure effects the accuracy of reconstruction of the P-T conditions in the high-grade metamorphic rocks and also allows evaluation the redox conditions of their formation. As a rule, the content of this end-member in clinopyroxenes is evaluated based on the crystal chemical recalculations of microprobe analyses. However, in some publications on eclogites, the results of recalculations of clinopyroxenes were compared with the data of Mössbauer spectroscopy. Significant difference was revealed between the measured and calculated Fe3+/ΣFe ratios, that can significantly affect the results of geothermometry. This paper presents the results of the Mössbauer spectroscopy measurements of clinopyroxene fractions separated from three samples of garnet-clinopyroxene granulites from the Udachnaya kimberlite pipe. The ratios Fe3+/ΣFe = 0.22–0.26 measured in clinopyroxenes correspond to 6–10 mol. % aegirine. These estimates are in good agreement with the values obtained for clinopyroxenes from the same samples by the recalculation of microprobe analyzes using the charge balance method. Following to this conclusion, we believe that crystal chemical recalculations of microprobe analyzes of clinopyroxenes from non-eclogitic rocks make it possible to correctly estimate the Fe3+ content in them. Similar recalculation of microprobe analyzes of clinopyroxenes from crustal xenoliths from other localities, as well as from ferrobasalts of the continental flood basalts provinces, ferrodolerite dikes, and gabbroid xenoliths (similar in bulk chemical composition to many lower-middle-crustal xenoliths) revealed significant amounts of previously unaccounted aegirine in them (up to 13 and 4–9 mol. %, respectively), that unleashes the potential for the reconstruction of redox conditions in many rocks.

About the authors

A. V. Sapegina

Department of Petrology and Volcanology, Geological Faculty, Moscow State University; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Author for correspondence.
Email: ann.sapegina@gmail.com
Russia, Moscow; Russia, Chernogolovka

M. V. Voronin

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: ann.sapegina@gmail.com
Russia, Chernogolovka

A. L. Perchuk

Department of Petrology and Volcanology, Geological Faculty, Moscow State University; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: ann.sapegina@gmail.com
Russia, Moscow; Russia, Chernogolovka

O. G. Safonov

Department of Petrology and Volcanology, Geological Faculty, Moscow State University; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: ann.sapegina@gmail.com
Russia, Moscow; Russia, Chernogolovka

References

  1. Шацкий В. С., Бузлукова Л.В., Ягоутц Э. и др. Строение и эволюция нижней коры Далдын-Алакитского района Якутской алмазоносной провинции // Геология и геофизика. 2005. Т. 46. № 12. С. 1273–1289.
  2. Aguirre-Díaz G. J., Dubois M., Laureyns J. et al. Nature and P-T conditions of the crust beneath the Central Mexican Volcanic Belt Based on a Precambrian crustal xenolith // Int. Geol. Rev. 2002. V. 44. № 3. P. 222–242.
  3. Ai Y. A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer // Contrib. Mineral. Petrol. 1994. V. 115. № 4. P. 467–473.
  4. Bagdassarov N., Batalev V., Egorova V. State of lithosphere beneath Tien Shan from petrology and electrical conducti-vity of xenoliths // J. Geophys. Res. Solid Earth. 2011. V. 116. № B1.
  5. Beccaluva L., Bianchini G., Natali C. et al. Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau // J. Petrol. 2009. V. 50. № 7. P. 1377–1403.
  6. Berman R.G., Aranovich L.Y., Pattison D.R.M. Reassessment of the garnet-clinopyroxene Fe-Mg exchange thermometer: II. Thermodynamic analysis // Contrib. Mineral. Petrol. 1995. V. 119. № 1. P. 30–42.
  7. Chen S., O’Reilly S.Y., Zhou X. et al. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths // Lithos. 2001. V. 56. № 4. P. 267–301.
  8. Chen W., Arculus R. J. Geochemical and isotopic characte-ristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, USA // Lithos. 1995. V. 36. № 3. P. 203–225.
  9. Chen X., Lin C., Shi L. Rheology of the lower crust beneath the northern part of North China: inferences from lower crustal xenoliths from Hannuoba basalts, Hebei Province, China // Science in China Series D Earth Sciences. 2007. V. 50. № 8. P. 1128–1141.
  10. Dodge F.C.W., Lockwood J.P., Calk L.C. Fragments of the mantle and crust from beneath the Sierra Nevada batholith: xenoliths in a volcanic pipe near Big Creek, California // GSA Bull. 1988. V. 100. № 6. P. 938–947.
  11. Droop G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria // Mineral. Mag. 1987. V. 51. № 361. P. 431–435.
  12. Dyar M.D., Breves E.A., Emerson E. et al. Accurate determination of ferric iron in garnets by bulk Mössbauer spectroscopy and synchrotron micro-XANES // Amer. Mineral. 2012. V. 97. № 10. P. 1726–1740.
  13. Ellis D.J., Green D.H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria // Contrib. Mineral. Petrol. 1979. V. 71. № 1. P. 13–22.
  14. Embey-Isztin A., Scharbert H.G., Dietrich H. et al. Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin // Mineral. Mag. 1990. V. 144. № 6. P. 652–670.
  15. Embey-Isztin A., Downes H., Kempton P.D. et al. Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: Mineral chemistry, thermobarometry and petrology // Contrib. Mineral. Petrol. 2003. V. 144. № 6. P. 652–670.
  16. Geiger C.A., Armbruster Th., Lager G.A. et al. A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol’danskii-Karyagin effect // Phys. Chem. Mineral. 1992. V. 19. № 2. P. 121–126.
  17. Geng X., Liu W., Zhang W. et al. The effect of host magma infiltration on the Pb isotopic systematics of lower crustal xenolith: an in-situ study from Hannuoba, North China // Lithos. 2020. V. 366–367. P. 105556.
  18. Huang X.L., Xu Y.G., Wang R.C. et al. The Nushan granulite xenoliths from Anhui province, China: mineralogical cha-racteristics, the lower crustal geotherm and their implications for genesis // Acta Petrol. Sinica. 2002. V. 18. № 3. P. 383–391.
  19. Jarosewich E., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. № 1. P. 43–47.
  20. Jolivet M., Brunel M., Seward D. et al. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: new constraints on the age of the Kunlun Fault // Tecto-nics. 2003. V. 22. № 5. P. 1–25.
  21. Kempton P.D., Harmon R.S., Hawkesworth C.J. et al. Petro-logy and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona // Geochim. Cosmochim. Acta. 1990. V. 54. № 12. P. 3401–3426.
  22. Kopylova M.G., O’Reilly S.Y., Genshaft Yu.S. Thermal state of the lithosphere beneath Central Mongolia: evidence from deep-seated xenoliths from the Shavaryn-Saram volcanic centre in the Tariat depression, Hangai, Mongolia // Lithos. 1995. V. 36. № 3. P. 243–255.
  23. Koreshkova M.Yu., Downes H., Levsky L.K. et al. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia // Precambr. Res. 2009. V. 168. № 3. P. 197–212.
  24. Koreshkova M.Yu., Downes H., Nikitina L.P. et al. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya Kimberlite Pipes, Siberia // J. Petrol. 2011. V. 52. № 10. P. 1857–1885.
  25. Krivolutskaya N.A., Kuzmin D.V., Gongalsky B.I. et al. Stages of trap magmatism in the Norilsk Area: new data on the structure and geochemistry of the volcanic rocks // Geochem. Int. 2018. V. 56. № 5. P. 419–437.
  26. Krogh E.J. The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data // Contrib. Mineral. Petrol. 1988. V. 99. № 1. P. 44–48.
  27. Liang Y., Deng J., Liu X. et al. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: insights into magma mixing and source metasomatism // Lithos. 2018. V. 302–303. P. 480–495.
  28. Lindsley D.H. Pyroxene thermometry // Ameri. Mineral. 1983. V. 68. № 5–6. P. 477–493.
  29. Litasov K.D. Petrology and geochemistry of lower-crustal xenoliths from alkali basalts of the Vitim Plateau // Geologia i Geofizika. 1999. V. 40. № 5. P. 674–693.
  30. Litasov K.D., Foley S.F., Litasov Y.D. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt // Lithos. 2000. V. 54. № 1. P. 83–114.
  31. Mansur A.T., Manya S., Timpa S. et al. Granulite-facies xenoliths in rift basalts of northern Tanzania: age, composition and origin of archean lower crust // J. Petrol. 2014. V. 55. № 7. P. 1243–1286.
  32. Nakamura D. A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set // J. Metamorph. Geol. 2009. V. 27. № 7. P. 495–508.
  33. Nasir S. The lithosphere beneath the northwestern part of the Arabian plate (Jordan): evidence from xenoliths and geophysics // Tectonophysics. 1992. V. 201. № 3. P. 357–370.
  34. Perchuk A.L., Sapegina A.V., Safonov O.G. et al. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precambr. Res. 2021. V. 357. P. 106122.
  35. Powell R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited // J. Metamorph. Geol. 1985. V. 3. № 3. P. 231–243.
  36. Proyer A., Dachs E., McCammon C. Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures // Contrib. Mineral. Petrol. 2004. V. 147. №. 3. P. 305–318.
  37. Råheim A., Green D.H. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene // Contrib. Mineral. Petrol. 1974. V. 48. № 3. P. 179–203.
  38. Ravna K. The garnet–clinopyroxene Fe2+-Mg geothermometer: an updated calibration // J. Metamorph. Geol. 2000. V. 18. № 2. P. 211–219.
  39. Redhammer G.J., Amthauer G., Roth G. et al. Single-crystal X-ray diffraction and temperature dependent 57Fe Mössbauer spectroscopy on the hedenbergite-aegirine (Ca,Na)(Fe2+,Fe3+)Si2O6 solid solution // Amer. Mineral. 2006. V. 91. № 8–9. P. 1271–1292.
  40. Redhummer G.J., Amthauer G., Lottermoser W. et al. Synthesis and structural properties of clinopyroxenes of the hedenbergite CaFe2+Si2O6 – aegirine NaFe3+Si2O6 solid-solution series // Eur. J. Mineral. 2000. V. 12. № 1. P. 105–120.
  41. Rudnick R.L., Gao S. 4.1 – composition of the continental crust // Eds. H.D. Holland, K.K. Turekian. Treatise on Geochemistry. Second Ed. Oxford: Elsevier, 2014. P. 1–51.
  42. Ryabchikov I.D., Solovova I.P., Ntaflos Th. et al. Subalkaline picrobasalts and plateau basalts from the Putorana plateau (Siberian continental flood basalt province): I. Mineral compositions and geochemistry of major and trace elements // Geochem. Int. 2001. V. 39. № 5. P. 415–431.
  43. Samuel V.O., Sajeev K., Hokada T. et al. Neoarchean arc magmatism followed by high-temperature, high-pressure metamorphism in the Nilgiri Block, southern India // Tectonophysics. 2015. V. 662. P. 109–124.
  44. Schaaf P., Heinrich W., Besch T. Composition and Sm-Nd isotopic data of the lower crust beneath San Luis Potosí, central Mexico: evidence from a granulite-facies xenolith suite // Chem. Geol. 1994. V. 118. № 1. P. 63–84.
  45. Scribiano V. Petrological notes on lower-crustal nodules from Hyblean Plateau (Sicily) // Period Mineral. 1988. V. 57. P. 41–52.
  46. Shatsky V.S., Malkovets V.G., Belousova E.A. et al. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes // Precambr. Res. 2016. V. 282. P. 1–20.
  47. Shatsky V.S. Wang Q., Skuzovatov S.Yu. et al. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled? // Precambri. Res. 2019. V. 332. P. 105388.
  48. Sibik S., Edmonds M., Maclennan J. et al. Magmas erupted during the Main Pulse of Siberian Traps volcanism were volatile-poor // J. Petrol. 2015. V. 56. № 11. P. 2089–2116.
  49. Sobolev V.N., McCammon C.A., Taylor L.A. et al. Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis // Amer. Mineral. 1999. V. 84. № 1–2. P. 78–85.
  50. Stepanova A.V., Samsonov A.V., Salnikova E.B. et al. Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: petrology, geochronology, and tectonic setting // J. Petrol. 2014. V. 55. № 9. P. 1719–1751.
  51. Stern R.J., Ali K.A., Ren M. et al. Cadomian (∼560 Ma) crust buried beneath the northern Arabian Peninsula: mine-ral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths // Earth Planet. Sci. Lett. 2016. V. 436. P. 31–42.
  52. Stosch H.-G., Ionov D.A., Puchtel I.S. et al. Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia // Lithos. 1995. V. 36. № 3. P. 227–242.
  53. Thakurdin Y., Bolhar R., Horváth P. et al. Characterization of crustal xenoliths from the Bearpaw Mountains, Montana (USA), using U-Pb geochronology, whole-rock geoche-mistry and thermobarometry, with implications for lower crustal processes and evolution of the Wyoming Craton // Chem. Geol. 2019. V. 524. P. 295–322.
  54. Török K., Németh B., Koller F. et al. Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study // Mineral. Petrol. 2014. V. 108. № 1. P. 33–47.
  55. Ulianov A., Kalt A. Mg-Al sapphirine- and Ca-Al hibonite-bearing granulite xenoliths from the Chyulu Hills Volcanic Field, Kenya // J. Petrol. 2006. V. 47. № 5. P. 901–927.
  56. Woodland A.B., Bauer M., Ballaran T.B. et al. Crystal che-mistry of garnet solid solutions and related spinels // Amer. Mineral. 2009. V. 94. № 2–3. P. 359–366.
  57. Woodland A.B., Ross C.R. A crystallographic and mössbauer spectroscopy study of – (almandine-“skiagite”) and – (andradite-“skiagite”) garnet solid solutions // Phys. Chem. Minerals. 1994. V. 21. № 3. P. 117–132.
  58. Xu X., O’Reilly S.Y., Zhou X. et al. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China // Lithos. 1996. V. 38. № 1. P. 41–62.
  59. Yang K., Arai S., Yu J. et al. Gabbroic xenoliths and megacrysts in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea: the implications for metasomatism of the lower continental crust // Lithos. 2012. V. 142–143. P. 201–215.
  60. Ying J.-F., Zhang H.-F., Tang Y.-J. Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton // Lithos. 2010. V. 119. № 3. P. 363–376.
  61. Yu J.-H., Xu X., O’Reilly S.Y. et al. Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks // Lithos. 2003. V. 67. № 1. P. 77–102.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (302KB)
4.

Download (78KB)
5.

Download (874KB)
6.

Download (365KB)
7.

Download (1MB)

Copyright (c) 2023 А.В. Сапегина, М.В. Воронин, А.Л. Перчук, О.Г. Сафонов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies