Staurolite in Metabasites: P-T-X Conditions and the Ratios of Petrogenic Components as a Criterion of the Appearance of Staurolite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In addition to the widespread Fe-Mg staurolite, typical for medium-temperature high-alumina metapelites, there are a number of finds of magnesian staurolite in metamorphosed mafic rocks – metabasites. Based on thermodynamic modeling and analysis of the mineral formation patterns, the most significant factors of the staurolite formation in metabasites have been revealed. For the formation of staurolite in metabasites, in contrast to staurolite in low- and medium-pressure metapelites, medium- and high-pressure conditions of metamorphism are necessary. An increase in the proportion of carbon dioxide in the composition of the water-carbon dioxide fluid has practically no effect on staurolite-forming mineral reactions, but leads to their shift to lower temperatures and higher pressures. Al, Fe, Mg, Ca are critical petrogenic rock components for the formation of magnesian staurolite, the contents and ratios of which primarily determine the stability of staurolite in metabasites. To understand the regularities of mineral formation, it seems appropriate to divide metabasites into subgroups of predominantly magnesian, iron-magnesian, and ferruginous protoliths. Based on this division, three petrochemical modules are proposed in the form of the ratio of rock-forming components: MgO/CaO, CaO/FM, Al2O3/FM, based on which it is possible to predict the appearance of staurolite in the basic rock when the corresponding P-T conditions of metamorphism are reached.

About the authors

E. B. Borisova

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; St. Petersburg State University

Author for correspondence.
Email: jenyaborisova98@gmail.com
Russia, Saint-Petersburg; Russia, Saint-Petersburg

Sh. K. Baltybaev

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; St. Petersburg State University

Author for correspondence.
Email: shauket@mail.ru
Russia, Saint-Petersburg; Russia, Saint-Petersburg

J. A. D. Connolly

Earth Sciences Department

Email: shauket@mail.ru
Switzerland, ETH, Zurich

References

  1. Борисова Е.Б., Балтыбаев Ш.К. Петрохимические критерии появления ставролита в метапелитах при среднетемпературном метаморфизме низких и средних давлений // Петрология. 2021. Т. 29. № 4. С. 536–551.
  2. Кориковский С.П. Фации метаморфизма метапелитов. М.: Наука, 1979. 264 с.
  3. Федькин В.В. Ставролит. Состав, свойства, парагенезисы и условия образования. М.: Наука, 1975. 271 с.
  4. Arnold J., Powell R., Sandiford M. Ampibolites with staurolite and other aluminous minerals: Calculated mineral equilibria in NCFMASH // J. Metamorph. Geol. 2000. V. 18. № 1. P. 23–40.
  5. Brooks C.K. The Fe2O3/FeO ratio of basaltic analyses: An appeal for a standardized procedure // Bull. Geol. Soc. Denmark. 1976. 25. P. 117–120.
  6. Connolly J.A. Multivariable phase–diagrams – an algorithm based on generalized thermodynamics // Amer. J. Sci. 1990. V. 290. P. 666–718.
  7. Dawson J.B. Kimberlites and Their Xenoliths. Berlin, Heidelberg: Springer-Verlag, 1980. 252 p.
  8. Deer W.A., Howie R.A., Zussman J. Rock-forming Minerals. Vol. 1a: Orthosilicates. N.Y.: Halsted Press, 1982. P. 1–936.
  9. Enami M., Zang Q. Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghoi district, Jiangsu Province, Eas China // Amer. Mineral. 1988. V. 73. P. 48–58.
  10. Faryad S.W., Hoinkes G. Reaction textures in Al-rich metabasite; implication for metamorphic evolution of the Easern border of the Middle // Lithos. 2006. V. 90. P. 145–157.
  11. Fockenberg T. Synthesis and chemical variability of Mg-staurolite in the system MgO–Al2O3–SiO2–H2O as a function of water pressure // Eur. J. Mineral. 1995. V. 7. P. 1373–1380.
  12. Gil Ibarguchi J.I., Mendia M. Mg- and Cr-rich staurolite and Cr-rich kyanite in high-pressure ultrabasic rocks (Cabo Ortegal, northwestern Spain) // Amer. Mineral. 1991. V. 76. P. 501–511.
  13. Grew E.S., Sandiford M. Staurolite in a garnet-hornblende-biotite schist from the Lanterman Range, northern Victoria Land, Antarctica // Neues Jahrbuch für Mineralogie. 1985. V. 9. P. 396–410.
  14. Hellman P.L., Green T.H. The high-pressure experimental crystallization of staurolite in hydrous marie compositions // Contrib. Mineral. Petrol. 1979. V. 68. P. 369–372.
  15. Helms T.S., McSween H.Y., Laolka T.C., Jarosewich F.E. Petrology of a Georgia Blue Ridge ampibolite unit with hornblende-gedrite-kyanite-staurolite // Amer. Mineral. 1987. V. 72. P. 1086–1096.
  16. Holdaway M.J., Mukhopadhyay B. Thermodynamic properties of stoichiometric staurolite H2Fe4Al18Si8O48 and H6Fe2Al18Si8O48 // Amer. Mineral. 1995. V. 80. P. 520–533.
  17. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. P. 333–383.
  18. Hughes C.J., Hussey E.M. Standardized procedure for presenting corrected Fe2O3/FeO ratios in analyses of fine-grained mafic rocks // N. Jb. Mineral. Mh. 1979. V. 12. P. 570–572.
  19. Humphreys H.S. Metamorphic evolution of ampibole-bearing aluminous gneisses from the Easern-Namaqua Province, South Africa // Amer. Mineral. 1993. V. 78. P. 1041–1055.
  20. Koch-Müller M. Experimentally determined Fe-Mg exchange between synthetic staurolite and garnet in the system MgO–FeO–Al2O3–SiO2–H2O // Lithos. 1997. V. 41. P. 185–212.
  21. Kuhns R.J., Sawkin F.J., Ito E. Magmatism, metamorphism and deformation at Helmo, Ontario, and the timing of Au-Mo mineralization in the golden mine // Econ. Geol. Bull. Soc. Econ. Geol. 1994. V. 89. P. 720–756.
  22. López V., Soto J. Metamorphism of calc-silicate rocks from the Alboran Basement // Eds. R. Zahn, M. Comas, A. Klaus. Proceedings of the Ocean Drilling Program, Scientific Results. 1991. V. 161. P. 251–259.
  23. Mezger J.E., Passchier C.W. Polymetamorphism and ductile deformation of staurolite-Crndierite schist of the Bossost Dome: Indication for Variscan extension in the Axial Zone of the central Pyrenees // Geol. Mag. 2003. V. 140. № 5. P. 595–612.
  24. Nicollet C. Saphirine et staurotide riche en magnésium et chrome dans les amphibolites et anorthosites à corindon du Vohibory Sud, Madagascar // Bull. Mineral. 1986. V. 109. P. 599–612.
  25. Powell R., Holland T.J.B., Worley B. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC // J. Metamorph. Geol. 1998. V. 16. P. 577–588.
  26. Purttscheller F., Mogessie A. Staurolite in gamet ampibolite from Sölden, Ötztal Old Crystalline Basement, Austria // Tschermaks Mineralogische und Petrographische Mitteilungen. 1984. V. 32. P. 223–233.
  27. Ríos C.A., Castellanos O.M. First report and significance of the staurolite metabasites associated to a sequence of calc-silicate rocks from the Silgará Formation at the central Santander Massif, Colombia // Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2014. V. 38. № 149. P. 418–429.
  28. Ríos C.A., Castellanos O.M., Gómez S.I., Avila G. Petroge-nesis of the metacarbonate and related rocks of the Silgará Formation, central Santander Massif, Colombian Andes: An overview of a “reaction calcic exoscarn” // Earth Sci. Res. J. 2008. V. 12. P. 72–106.
  29. Santosh M., Tsunogae T., Koshimoto S. First report of sapphirine-bearing rocks from the Palghat-Cauvery Shear Zone System, Southern India // Gondwana Res. 2004. V. 7. P. 620–626.
  30. Schreyer W., Seifert F. High-pressure phases in the system MgO–Al2O3–SiO2–H2O // Amer. J. Sci. 1969. V. 267-A. P. 407–443.
  31. Schreyer W. A reconnaissance study of the system MgO–Al2O3–SiO2–H2O at pressures between l0 and 25 kb // Carnegie Inst. Wash. Year Book. 1967. V. 6. P. 380–392.
  32. Schreyer W., Horrocks P.C., Abraham K. High-magnesium staurolite in a sapphirine-garnet rock from the Limpopo Belt, Southern Africa // Contrib. Mineral. Petrol. 1984. V. 86. P. 200–207.
  33. Selverstone J., Spear F.S., Franz G., Morteani G. P-T-t paths for hornblende + kyanite + staurolite garbenschists: High-pressure metamorphism in the western Tauern Window, Australia // J. Petrol. 1984. V. 25. P. 501–531.
  34. Shimpo M., Tsunogae T., Santosh M. First report of garnet-corundum rocks from Southern India: Implications for prograde high-pressure (eclogite-facies?) metamorphism // Earth Planet. Sci. Lett. 2006. V. 242. P. 111–129.
  35. Simon G., Chopin C. Enstatite-sapphirine crack-related assemblages in ultrahigh-pressure pyrope megablasts, Dora-Maira massif, western Alps // Contrib. Mineral. Petrol. 2001. V. 140. P. 422–440.
  36. Simon G., Chopin C., Schenk V. Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps // Lithos. 1997. V. 41. P. 37–57.
  37. Spear F.S. Phase equilibria of amphibolites from the Post Pond Volcanics, Vermont // Carnegie Inst. Wash. Year Book. 1977. V. 76. P. 613–619.
  38. Spear F.S. Petrogenetic grid for amphibolites from the Post Pond and Ammonoosuc Volcanics // Carnegie Inst. Wash. Year Book. 1978. V. 77. P. 805–808.
  39. Spear F.S. The gedrite-anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont // Amer. Mineral. 1980. V. 65. № 11–12. P. 1103–1118.
  40. Spear F.S. Phase equilibria of ampibolites from the Post Pond Volcanics, Mt. Cube quadrangle, Vermont // J. Petrol. 1982. V. 23. P. 383–426.
  41. Thompson A. Calc-silicate diffusion zones between marble and pelitic schist // J. Petrol. 1975. V. 16. P. 314–346.
  42. Tsujimori T., Liou J.G. Metamorphic evolution of kyanite-staurolite-bearing epidote-ampibolite from the Early Palaeozoic Oeyama belt, SW Japan // J. Metamorph. Geol. 2004. V. 22. P. 301–313.
  43. Tsunogae T., Santosh M. Sapphirine and corundum-bearing granulites from Karur, Madurai Block, Southern India // Gondwana Res. 2003. V. 6. P. 925–930.
  44. Tsunogae T., van Reenen D.D. High-pressure and ultrahigh-temperature metamorphism in the Central Zone of the Limpopo Complex, southern Africa // Geol. Soc. Amer. 2010. https://doi.org/10.1130/2011.1207(07)
  45. Ward C.M. Magnesium staurolite and green chromian staurolite from Fiordland, New Zealand // Amer. Mineral. 1984. V. 69. P. 531–540.
  46. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
  47. White R.W., Powell R., Holland T.J.B., Worley B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and ampibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 // J. Metamorph. Geol. 2000. V. 18. P. 497–511.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (128KB)
3.

Download (184KB)
4.

Download (163KB)
5.

Download (203KB)
6.

Download (501KB)
7.

Download (189KB)
8.

Download (156KB)
9.

Download (39KB)

Copyright (c) 2023 Е.Б. Борисова, Ш.К. Балтыбаев, Дж. Коннолли

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».