Mammals of Ethiopia: results and prospects of Russian studies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article provides a brief overview of the main results of studies on mammals in Ethiopia performed by the Joint Ethio-Russian Biological Expedition. The mammals of the country represent a suitable model for studying the processes of evolution and speciation in the mountainous tropics, as well as ways to adapt to the conditions of the highlands. The results obtained are of particular importance for the development of a number of areas of evolutionary biology, as well as nature conservation and medical biology: exploring mechanisms for the emergence of high biodiversity and endemism; empirical verification of alternative speciation hypotheses; assessment of the role of introgressive hybridization in evolution; study of coevolution of functionally related mitochondrial and nuclear genes. Using the example of the Ethiopian Highlands, the prospects for further studies of the processes of conjugate evolution of small mammals and their specific arena- and hantaviruses in conditions of long-term isolation are demonstrated.

全文:

受限制的访问

作者简介

L. Lavrenchenko

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: llavrenchenko@gmail.com

доктор биологических наук, заведующий лабораторией микроэволюции млекопитающих 

俄罗斯联邦, Moscow

参考

  1. Wallace A.R. Tropical nature and other essays. London: Macmillan, 1878.
  2. Dobzhansky Th. Evolution in the tropics // American Scientist. 1950, vol. 38, pp. 209–221.
  3. Mittermeier R.A., Turner W.R., Larsen F.W. et al. Global Biodiversity Conservation: The critical role of hotspots. Biodiversity Hotspots: Distribution and protection of conservation priority areas. Berlin–Heidelberg: Springer, 2011. Pp. 3–22.
  4. Patterson B.D. A new “age of discovery” for mammals // Journal of Mammalian Evolution. 2007, vol. 14, no. 1, pp. 67–69.
  5. Kruskop S.V., Lavrenchenko L.A. A new species of long-eared bat (Plecotus; Vespertilionidae, Mammalia) from Ethiopia // Myotis. 2000, vol. 38, pp. 5–17.
  6. Lavrenchenko L.A., Likhnova O.P., Baskevich M.I., Bekele A. Systematics and distribution of Mastomys (Muridae, Rodentia) from Ethiopia, with the description of a new species // Mammalian Biology. 1998, vol. 63, no. 1, pp. 37–51.
  7. Lavrenchenko L.A. A contribution to the systematics of Desmomys Thomas, 1910 (Rodentia, Muridae) with the description of a new species // Bonner zoologische Beiträge. 2003, Bd. 50, H. 4, S. 313–327.
  8. Lavrenchenko L.A., Verheyen W.N., Verheyen E. et al. Morphometric and genetic study of Ethiopian Lophuromys flavopunctatus Thomas, 1888 species complex with description of three new 70-chromosomal species (Muridae – Rodentia) // Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. 2007, vol. 77, pp. 77–117.
  9. Taylor P.J., Lavrenchenko L.A., Carleton M.D. et al. Specific limits and emerging diversity patterns in East African populations of laminate-toothed rats, genus Otomys (Muridae: Murinae: Otomyini): Revision of the Otomys typus complex // Zootaxa. 2011, vol. 3024, pp. 1–66.
  10. Lavrenchenko L.A., Voita L.L., Hutterer R. Diversity of shrews in Ethiopia, with the description of two new species of Crocidura (Mammalia: Lipotyphla: Soricidae). Zootaxa. 2016, vol. 4196, no. 1, pp. 38–60.
  11. Mizerovska D., Mikula O., Bartakova V. et al. Integrative taxonomic revision of the Ethiopian endemic rodent genus Stenocephalemys (Muridae: Murinae: Praomyini) with the description of two new species // Journal of Vertebrate Biology. 2020, vol. 69, no. 2, pp. 1–21.
  12. Nicolas V., Mikula O., Lavrenchenko L.A. et al. Phylogenomics of African radiation of Praomyini (Muridae: Murinae) rodents: First fully resolved phylogeny, evolutionary history and delimitation of extant genera // Molecular Phylogenetics and Evolution. 2021, vol. 163, no. 1, 107263.
  13. Krásová J., Mikula O., Lavrenchenko L.A. et al. A new rodent species of the genus Mus (Rodentia: Muridae) confirms the biogeographical uniqueness of the isolated forests of southern Ethiopia // Organisms Diversity & Evolution. 2022, vol. 22, no. 2, pp. 491–509.
  14. Lavrenchenko L.A., Bekele A. Diversity and conservation of Ethiopian mammals: What have we learned in 30 years? // Ethiopian Journal of Biological Sciences. 2017, vol. 16, pp. 1–20.
  15. Buffenstein R., Amoroso V., Andziak B. et al. The naked truth: a comprehensive clarification and classification of current “myths” in naked mole-rat biology // Biological Reviews. 2022, vol. 97, no. 1, pp. 115–140.
  16. Zemlemerova E.D., Kostin D.S., Lebedev V.S. et al. Genetic diversity of the naked mole‐rat (Heterocephalus glaber) // Journal of Zoological Systematics and Evolutionary Research. 2021, vol. 59, no. 1, pp. 323–340.
  17. Wasser S.K., Lovett J.C. Introduction to the biogeography and ecology of the rain forests of eastern Africa. Biogeography and ecology of the rain forests of eastern Africa. Cambridge: Cambridge University Press, 1993. Pp. 3–7.
  18. Terborgh J. Maintenance of diversity in tropical forests // Biotropica. 1992, vol. 24, pp. 283–292.
  19. Fjeldsa J., Lovett J.C. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres // Biodiversity and Conservation. 1997, vol. 6, no. 3, pp. 325–346.
  20. Fjeldsa J., Lambin E., Mertens B. Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data // Ecography. 1999, vol. 22, no. 1, pp. 63–78.
  21. Lavrenchenko L.A., Verheyen E. An assessment of the systematics of the genus Desmomys Thomas, 1910 (Rodentia: Muridae) using mitochondrial DNA sequences. African Biodiversity: Molecules, Organisms, Ecosystems / Ed. by B.A. Huber, B.J. Sinclair, K.-H. Lampe. N.Y.: Springer Science, 2005. Pp. 363–369.
  22. Lavrenchenko L.A. The mammals of the isolated Harenna Forest (southern Ethiopia): structure and history of the fauna // Bonner Zoologische Monographien. 2000, vol. 46, pp. 223–231.
  23. Bannikova A.A., Zemlemerova E.D., Lebedev V.S., Lavrenchenko L.A. The phylogenetic relationships within the Eastern Afromontane clade of Crocidura based on mitochondrial and nuclear data // Mammalian Biology. 2021, vol. 101, no. 6, pp. 1005–1018.
  24. Mizerovská D., Martynov A.A., Mikula O. et al. Genomic diversity, evolutionary history, and species limits of the endemic Ethiopian laminate-toothed rats (genus Otomys, Rodentia: Muridae) // Zoological Journal of the Linnean Society. 2023, vol. 199, no. 4, pp. 1059–1077.
  25. Bryja J., Kostin D., Meheretu Y. et al. Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient // Molecular Phylogenetics and Evolution. 2018, vol. 118, pp. 75–87.
  26. Komarova V.A., Kostin D.S., Bryja J. et al. Complex reticulate evolution of speckled brush‐furred rats (Lophuromys) in the Ethiopian centre of endemism // Molecular Ecology. 2021, vol. 30, no. 10, pp. 2349–2365.
  27. Kostin D.S., Martynov A.A., Lebedev V.S. et al. Position of the ammodile and the origin of Gerbillinae (Rodentia): Out of the Horn of Africa? // Zoologica Scripta. 2022, vol. 51, no. 5, pp. 522–532.
  28. Lara M.C., Geise L., Schneider C.J. Diversification of small mammals in the Atlantic Forest of Brazil: testing the alternatives. Mammalian Diversification: from chromosomes to phylogeography (a celebration of the career of James L. Patton) // University of California Publications in Zoology. 2005, vol. 133, pp. 311–333.
  29. Moritz C., Patton J.L., Schneider C.J., Smith T.B. Diversification of rainforest faunas: An integrated molecular approach // Annual Review of Ecology and Systematics. 2000, vol. 31, pp. 533–563.
  30. Lavrenchenko L.A. Testing of alternative hypotheses for speciation: a case study on ground vertebrates in tropical mountains // Biology Bulletin. 2011, vol. 38, no. 6, pp. 551–557.
  31. Lavrenchenko L.A., Bannikova A.A., Lebedev V.S. Shrews (Crocidura spp.) endemic to Ethiopia: recent adaptive radiation of an ancient lineage // Doklady Biological Sciences. 2009, vol. 424, no. 1, pp. 57–60.
  32. Kostin D.S., Lavrenchenko L.A. Adaptation of rodents living in a highland: combination of mitochondrial introgression and convergent molecular evolution // Doklady Biochemistry and Biophysics. 2018, no. 1, pp. 333–336.
  33. Bartáková V., Bryjová A., Nicolas V. et al. Mitogenomics of the endemic Ethiopian rats: looking for footprints of adaptive evolution in sky islands // Mitochondrion. 2021, vol. 57, no. 8, pp. 182–191.
  34. Lavrenchenko L.A., Verheyen E., Potapov S.G. et al. Divergent and reticulate processes in evolution of Ethiopian Lophuromys flavopunctatus species complex: evidence from mitochondrial and nuclear DNA differentiation patterns // Biological Journal of the Linnean Society. 2004, vol. 83, no. 3, pp. 301–316.
  35. Ivlev Yu.F., Lavrenchenko L.A. A decrease in heat insulation of the black-clawed brush furred rat (Lophuromys melanonyx, Petter) during adaptation to high altitudes // Doklady Biological Sciences. 2016, no. 1, pp. 36–41.
  36. Schlaepfer M.A., Runge M.C., Sherman P.W. Ecological and evolutionary traps // Trends in Ecology and Evolution. 2002, vol. 17, no. 10, pp. 474–480.
  37. Dharmarajan G., Li R., Chanda E. et al. The animal origin of major human infectious diseases: what can past epidemics teach us about preventing the next pandemic // Zoonoses. 2022, vol. 2, no. 11, pp. 1–13.
  38. Jones K.E., Patel N.G., Levy M.A. et al. Global trends in emerging infectious diseases // Nature. 2008, vol. 451, pp. 990–993.
  39. Carlson C.J., Albery G.F., Merow C. et al. Climate change increases cross-species viral transmission risk // Nature. 2022, vol. 607, no. 7919, pp. 555–562.
  40. Meheretu Y., Čížková D., Těšíková J. et al. High diversity of RNA viruses in rodents, Ethiopia // Emerging Infectious Diseases. 2012, vol. 18, pp. 2047–2050.
  41. Kang H.J., Stanley W.T., Esselstyn J.A. et al. Expanded host diversity and geographic distribution of hantaviruses in sub-Saharan Africa // Journal of Virology. 2014, vol. 88, pp. 7663–7667.
  42. Těšíková J., Bryjová A., Bryja J. et al. Hantavirus strains in East Africa related to Western African hantaviruses // Vector-Borne and Zoonotic Diseases. 2017, vol. 17, no. 4, pp. 278–280.
  43. Cuypers L.N., Gryseels S., Van Houtte N. et al. Subspecific rodent taxa as the relevant host taxonomic level for mammarenavirus host specificity // Virology. 2023, vol. 581, pp. 116–127.
  44. de Bellocq J.G., Bryjová A., Martynov A.A., Lavrenchenko L.A. Dhati Welel virus, the missing mammarenavirus of the widespread Mastomys natalensis // Journal of Vertebrate Biology. 2020, vol. 69, no. 2, 20018.
  45. Klempa B., Fichet-Calvet E., Lecompte E. et al. Hantavirus in African wood mouse, Guinea // Emerging Infectious Diseases. 2006, vol. 12, pp. 838–840.
  46. Sumibcay L., Kadjo B., Gu S.H. et al. Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote d’Ivoire // Virology Journal. 2012, vol. 9, p. 34.
  47. Omoga D.C.A., Tchouassi D.P., Venter M. et al. Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya // Pathogens. 2023, vol. 12, p. 685.
  48. Klempa B., Lavrenchenko L.A., Auste B. et al. Tigray virus as a genetic chimaera between rodent-borne and shrew-borne hantaviruses // Proceedings of the 29th Annual Meeting of the Society for Virology. Düsseldorf: Universität Düsseldorf, 2019. P. 191.
  49. Meheretu Y., Stanley W.T., Craig E.W. et al. Tigray orthohantavirus infects two related rodent species adapted to different elevations in Ethiopia // Vector-Borne and Zoonotic Diseases. 2019, vol. 19, pp. 950–953.
  50. de Bellocq J.G., Těšíková J., Meheretu Y. et al. Complete genome characterisation and phylogenetic position of Tigray hantavirus from the Ethiopian white-footed mouse, Stenocephalemys albipes // Infection, Genetics and Evolution. 2016, vol. 45, pp. 242–245.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».