The Large Earthquakes and Deformation Waves as Possible Triggers of Climate Warming in the Arctic and Glacier Destruction in the Antarctic

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

According to the modern climate paradigm, anomalous phenomena occurring in the polar regions of the Earth, such as rapid warming in the Arctic and intensive destruction of glaciers in the Antarctic, are a serious danger and challenge for civilization since they can potentially lead to global climate warming by several degrees and a rise in the level of the World Ocean by several tens of centimeters as soon as the 21st century. It is presumed that the main cause of these processes, which have strongly accelerated since the second half of the 1970s, was the anthropogenic factor of carbon dioxide emissions into the atmosphere, leading to the greenhouse effect. This statement, taken for granted in most developed countries, has led to several international agreements to limit carbon emissions and ideas about the need for a rapid transition to a low-carbon green economy. As for the influence of natural factors on the development of the mentioned dangerous processes, no one denies such a possibility since the facts of climatic changes in preindustrial eras are well known in the geological history of the Earth. However, the geological time scales are so large that most climatologists implicitly proceed from the assumption that short-term climate changes observed over the past and present centuries with a characteristic time of tens of years are mainly determined by rapidly changing atmospheric and oceanic processes. However, one should bear in mind the influence of rapid geophysical processes, such as cycles of earthquakes or volcanic eruptions, which are comparable in time scales with modern climate changes. If an analysis is based on the large megathrust earthquakes with a magnitude greater than 8 and the large-scale deformation waves caused by them in the lithosphere, then, considering physically based trigger mechanisms, it is possible to construct a geodynamic scheme that explains the observed climatic changes in the Arctic and the glacier destruction processes in the Antarctic. This article describes this new geodynamic concept.

作者简介

L. Lobkovskii

Shirshov Institute of Oceanology (IO), Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (MIPT) (National Research University), Dolgoprudnyi, Russia

Email: vestnik.ran@yandex.ru
Moscow, Russia; Dolgoprudnyi, Russia

A. Baranov

Institute of Earthquake Prediction Theory and Mathematical Geophysics (IEPT), Russian Academy of Sciences, Moscow, Russia

Email: vestnik.ran@yandex.ru
Moscow, Russia

I. Vladimirova

Shirshov Institute of Oceanology (IO), Russian Academy of Sciences, Moscow, Russia; Federal Research Center Geographical Survey (FRC GS), Russian Academy of Sciences, Obninsk, Russia

Email: vestnik.ran@yandex.ru
Moscow, Russia; Obninsk, Russia

D. Alekseev

Moscow Institute of Physics and Technology (MIPT) (National Research University), Dolgoprudnyi, Russia; Shirshov Institute of Oceanology (IO), Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: vestnik.ran@yandex.ru
Dolgoprudnyi, Russia; Moscow, Russia

参考

  1. Лобковский Л.И. Возможный сейсмогенно-триггерный механизм резкой активизации эмиссии метана и потепления климата в Арктике // Арктика: экология и экономика. 2020. № 3 (39). С. 62–72. https://doi.org/10.25283/2223-4594-2020-3-62-72
  2. Lobkovsky L.I. Seismogenic-triggering mechanism of gas emission activizations on the Arctic shelf and associated phases of abrupt warming // Geosciences. 2020. V. 10. № 11. Article number 428. https://doi.org/10.3390/geosciences10110428
  3. Lobkovsky L.I., Baranov A.A., Ramazanov M.M. et al. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation // Geosciences. 2022. V. 12. № 10. Article number 372. https://doi.org/10.3390/geosciences12100372
  4. Матвеева Т.В. Образование гидратов углеводородных газов в субаквальных обстановках // Мировой океан. Т. 3. Твёрдые полезные ископаемые и газовые гидраты / Под ред. Л.И. Лобковского и Г.А. Черкашева. М.: Научный мир, 2018. С. 586–694.
  5. Wallmann K., Pinero E., Burwicz E. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach // Energies. 2012. № 5. P. 2449–2498.
  6. Dickens G.R., O’Neil J.R., Rea D.K., Owen R.M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene // Paleoceanography. 1995. № 10. P. 965–971.
  7. Maslin M., Owen M., Day S., Long D. Linking continental slope failure and climate change: testing the clathrate gun hypothesis // Geology. 2004. V. 32. № 1. P. 53–56.
  8. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Rev. Geophys. 2017. V. 55. P. 126–168.
  9. Адушкин В.В., Кудрявцев В.П., Турунтаев С.Б. Глобальный поток метана в межгеосферном газообмене // Доклады РАН. Науки о Земле. 2003. Т. 391. № 6. С. 813–816.
  10. Kennett J., Cannariato K.G., Henry I.L., Behl P.J. Methane hydrate in Quaternary climate change: the clathrate gun hypothesis. Washington, D.C: AGU, 2003.
  11. Kvenvolden K.A. Methane hydrates and global climate // Glob. Biogeochem. Cycles. 1988. № 2. P. 221–229.
  12. Koven C.D., Ringeval B., Friedlingstein P. et al. Permafrost carbon-climate feedback accelerated global warming // Proc. Natl. Acad. Sci. USA. 2011. V. 108(36). P. 14769–14774.
  13. Shakhova N., Semiletov I., Sergienko V. et al. The East SiberianArctic Shelf: Towards further assessment of permafrost related methane flux and role of sea ice // Nature Comm. 2017. № 8. Article number 15872. geosciences12100372
  14. Chuvilin E., Bukhanov B., Davletshina D. et al. Dissociation and Self-Preservation of Gas Hydrates in Permafrost // Geosciences. 2018. V. 8. № 12. Article number 431.
  15. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing // Geosciences. 2021. V. № 2. Article number 71.
  16. Баранов Б.В., Лобковский Л.И., Дозорова К.А., Цуканов Н.В. Система разломов, контролирующая метановые сипы на шельфе моря Лаптевых // Доклады РАН. Науки о Земле. 2019. Т. 486. № 3. С. 354–358.
  17. Wallman K., Riedel M., Hong W.L. et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound ratherthan global warming // Nature Comm. 2018. № 9. Article number 83.
  18. Davidson D.W., Garg S.K., Gough S.R. et al. Laboratory analysis of naturally occurring gas hydrate from sediment of the Gulf Mexico // GCA. 1986. V. 50. P. 619–623.
  19. Yakushev V.S., Istomin V.A. Gas hydrates self-preservation effect. In Physics and Chemistry of ice / Eds. Maeno N., Hondoh T. Hokkaido Univ. Press: Sapporo, Japan. 1992. P. 136–140.
  20. Баренблатт Г.И., Лобковский Л.И., Нигматулин Р.И. Математическая модель истечения газа из газонасыщенного льда и газогидратов // Доклады РАН. Науки о Земле. 2016. Т. 470. № 4. С. 721–754.
  21. Лобковский Л.И., Рамазанов М.М. К теории фильтрации с двойной пористостью // Доклады РАН. Науки о Земле. 2019 Т. 484. № 3. С. 348–351.
  22. Lay T. The surge of great earthquakes from 2004 to 2014 // Earth and Planetary Science Letters. 2015. № 409. P. 133–146.
  23. Climate at a Glance: Global Time Series // NOAA National Centers for Environmental information. https://www.ncei.noaa.gov/cag/ (дата обращения 15.09.2022).
  24. Elsasser W.M. Convection and stress propagation in the upper mantle. The Application of Modern Physics to the Earth and Planetary Interiors / Ed. by S.K. Runcorn. N.Y.: John Wiley, 1969. P. 223–246.
  25. Melosh H.J. Nonlinear stress propagation in the Earth’s upper mantle // J. Geophys. Res. 1976. V. 32. P. 5621–5632.
  26. Rice J.R. The mechanics of earthquake rupture. Physics of the Earth’s Interior / Ed. by Dziewonski A.M., Boschi E. North-Holland, Amsterdam: Italian Physical Society, 1980. P. 555–649.
  27. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996.
  28. Кузьмин Ю.О. Современная геодинамика и медленные деформационные волны // Физика Земли. 2020. № 4. С. 172–182.
  29. Bykov V.G. Nonlinear waves and solitons in models of fault block geological media // Russian Geology and Geophysics. 2015. V. 56. № 5. P. 793–803.
  30. Гарагаш И.А., Лобковский Л.И. Деформационные тектонические волны как возможный триггерный механизм активизации эмиссии метана в Арктике // Арктика: экология и экономика. 2021. № 1. С. 42–50.
  31. Лобковский Л.И., Рамазанов М.М. Термомеханические волны в системе упругая литосфера–вязкая астеносфера // Изв. РАН. Механика жидкости и газа. 2021. № 6. С. 4–18.
  32. Lan X., Thoning K.W., Dlugokencky E.J. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2023-02. https://doi.org/10.15138/P8XG-AA10
  33. Dlugokencky E.J., Steele L.P., Lang P.M., Masarie K.A. The growth rate and distribution of atmospheric methane // J. Geophys. Res. 1994. V. 99. P. 17021–17043. https://doi.org/10.1029/94JD01245
  34. Cook A.J., Vaughan D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years // Cryosphere. 2010. № 4. P. 77–98.
  35. Fretwell P., Pritchard H.D., Vaughan D.G. et al. Bedmap 2: improved ice bed, surface and thickness datasets for Antarctica // Cryosphere. 2013. № 7. C. 375–393.
  36. Wang S., Liu H., Jezek K. et al. Controls on Larsen C Ice Shelf retreat from a 60-year satellite data record // J. Geophys. Res. 2022. V. 127. e2021JF006346.
  37. Domack E., Duran D., Leventer A. et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch // Nature. 2005. V. 436. P. 681–685. https://doi.org/10.1038/nature03908
  38. Kaufman D.S., Broadman E. Revisiting the Holocene global temperature conundrum // Nature. 2023. V. 614. P. 425–435. https://doi.org/10.1038/s41586-022-05536-w
  39. Lösing M., Ebbing J., Szwillus W. Geothermal heat flux in Antarctica: Assessing models and observations by Bayesian inversion // Front. Earth Sci. 2020. V. 8. Article number 105. https://doi.org/10.3389/feart.2020.00105
  40. Baranov A., Tenzer R., Morelli A. Updated Antarctic Crustal Model // Gondwana Res. 2021. V. 89. P. 1–18. https://doi.org/10.1016/j.gr.2020.08.010
  41. Baranov A., Morelli A., Chuvaev A. ANTASed – An Updated Sediment Model for Antarctica // Front. Earth Sci. 2021. V. 9. 722699. https://doi.org/10.3389/feart.2021.722699
  42. van Wyk de Vries M., Bingham R., Hein A. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica // Geol. Soc. Spec. Publ. 2018. V. 461. № 1. Article number 231. https://doi.org/10.1144/SP461.7
  43. Mouginot J., Rignot E., Scheuchl B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity // Geophys. Res. Lett. 2019. V. 46. P. 9710–9718. https://doi.org/10.1029/2019GL083826
  44. Rignot E., Mouginot J., Scheuchl B. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017 // Proc. Nat. Acad. Sci. USA. 2019. V. 116. P. 1095–1103. https://doi.org/10.1073/pnas.1812883116
  45. Loose B., Naveira Garabato A.C., Schlosser P. et al. Evidence of an active volcanic heat source beneath the Pine Island Glacier // Nat. Commun. 2018. V. 9. Article number 2431. https://doi.org/10.1038/s41467-018-04421-3
  46. Winkelmann R., Martin M.A., Haseloff M. et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description // The Cryosphere. 2011. № 5. P. 715–726.
  47. Pattyn F. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f. ETISh v1.0) // The Cryosphere. 2017. № 11. P. 1851–1878.
  48. Graham A.G.C., Wåhlin A., Hogan K.A. et al. Rapid retreat of Thwaites Glacier in the pre-satellite era // Nat. Geosci. 2022. V. 15. P. 706–713. https://doi.org/10.1038/s41561-022-01019-9

补充文件

附件文件
动作
1. JATS XML
2.

下载 (455KB)
3.

下载 (1MB)
4.

下载 (291KB)
5.

下载 (701KB)
6.

下载 (560KB)
7.

下载 (942KB)
8.

下载 (477KB)
9.

下载 (1004KB)
10.

下载 (929KB)
11.

下载 (1MB)

版权所有 © Л.И. Лобковский, А.А. Баранов, И.С. Владимирова, Д.А. Алексеев, 2023

##common.cookie##