Vliyanie otzhiga na strukturu poverkhnostnykh sloev dioksida tseriya, poluchennykh metodom magnetronnogo raspyleniya

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Методом магнетронного распыления с применением последующего отжига получены нано- и микроразмерные поверхностные слои диоксида церия CeO2 на основе титанового сплава ВТ6. Структуру образцов определяли с помощью сканирующей электронной микроскопии, электронной Оже-спектроскопии, энергодисперсионной спектроскопии и рентгеновской дифрактрометрии. Показаны линейная зависимость толщины поверхностного слоя от длительности его осаждения и нелинейный ее рост при увеличении мощности источника питания, увеличение шероховатости поверхности, расслаивание и разрыхление поверхностного слоя, предположительно связанные с отжигом. В образцах с поверхностным слоем тоньше 750 нм обнаружено формирование подслоя TiO2, Al2O3 и CeVO4, а при слое <300 нм весь диоксид церия расходовался на объединение с диоксидом ванадия до ванадата.

参考

  1. Lee, W. Oxygen surface exchange at grain boundaries of oxide ion conductors / W. Lee, H.J. Jung, M.H. Lee, Y.B. Kim, J.S. Park, R. Sinclair, F.B. Prinz // Adv. Funct. Mater. 2012. V.22. P.965-971. doi: 10.1002/adfm.201101996.
  2. Cho, S. Microstructural and electrical properties of Ce0,9Gd0,1O1,95 thin-film electrolyte in solid-oxide fuel cells / Cho S., Yoon J., Kim J.H., Zhang X., A. Manthiram, Wang H. //j. Mater. Res. 2011. V.26. P.854-859. doi: 10.1557/jmr.2010.72.
  3. So¤nderby, S. Strontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cells / S. So¤nderby, P.L. Popa, J. Lu, B.H. Christensen, K.P. Almtoft, L.P. Nielsen, P. Eklund // Adv. Energy Mater. 2013. №3. P.923-929. doi: 10.1002/aenm.201300003.
  4. Tian, D. Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer / Tian D., Lin B., Yang Y., Chen Y., Lu X., Wang Z., Liu W., Traversa E. // Electrochim. Acta. 2016. V.208. P.318-324. doi: 10.1016/j.electacta.2016.04.189.
  5. Jaiswal, N. A brief review on ceria based solid electrolytes for solid oxide fuel cells / N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Uppadhya, O. Parkash //j. Alloys Compd. 2019. V.781. P.984-1005. doi: 10.1016/j.jallcom.2018.12.015.
  6. Raza, R. Functional ceria-based nanocomposites for advanced low-temperature (300-600 °C) solid oxide fuel cell: a comprehensive review / R. Raza, Zhu B., A. Rafique, M.R. Naqvi, P. Lund // Mater. Today Energy. 2020. V.15. Art.100373. doi: 10.1016/j.mtener.2019.100373.
  7. Singh, B. Low temperature solid oxide electrolytes (LT-SOE): a review / B. Singh, S. Ghosh, S. Aich, B. Roy //j. Power Sources. 2017. V.339. P.103-135. doi: 10.1016/j.jpowsour.2016.11.019.
  8. Paier, J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment /j. Paier, C. Penschke, J. Sauer // Chem. Rev. 2013. V.113. P.3949-3985.
  9. Bamwenda, G.R. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ce4a+q and Fe3a+q species / G.R. Bamwenda, H. Arakawa //j. Molecular Catal. A: Chemical. 2000. V.161. P.105-113.
  10. Gao, H. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity / Gao H., Qiao B., Wang T.-J., Wang D., Jin Y. // Industr. Eng. Chem. Res. 2014. V.53. P.189-197.
  11. Torrente-Murciano, L. Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons / L. Torrente-Murciano, A. Gilbank, B. Puertolas, T. Garcia, B. Solsona, D. Chadwick // Appl. Catalys. B: Environ. 2013. V.132, 133. P.116-122.
  12. Vorokhta, M. HAXPES study of CeOx thin film-silicon oxide interface / M. Vorokhta, I. Matolinova¢, M. Dubau, S. Haviar, I. Khalakhan, K. SÚ evcÚÚ ikova¢, T. Mori, H. Yoshikawa, V. Matolin // Appl. Surf. Sci. 2014. V.303. P.46-53.
  13. Hierso, J. Nanostructured ceria based thin films (£1mm) as cathode/electrolyte interfaces /j. Hierso, P. Boy, K. Valle, J. Vulliet, F. Blein, C. Laberty-Robert, C. Sanchez //j. Solid State Chem. 2013. V.197. P.113-119.
  14. Shen, D. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy / Shen D., Ma H., Guo C., Cai J., Li G., He D., Yang Q. //j. Rare Earths. 2013. V.31. P.1208-1213.
  15. Cao, X.Q. Ceramic materials for thermal barrier coatings / X.Q. Cao, R. Vassen, D. Stoever //j. Eur. Ceram. Soc. 2004. V.24. P.1-10.
  16. Lin, K.-S. Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: A review / K.-S. Lin, S. Chowdhury // Intern. J. Mol. Sci. 2010. V.11. P.3226-3251.
  17. Patsalas, P. Optical performance of nanocrystalline transparent ceria films / P. Patsalas, S. Logothetidis, C. Metaxa // Appl. Phys. Lett. 2002. V.81. P.466-468.
  18. Azimi, G. Hydrophobicity of rareearth oxide ceramics / G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi // Nat. Mater. 2013. V.12. P.315-320.
  19. Fahrenholtz, W.G. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys / W.G. Fahrenholtz, M.J. O'Keefe, H. Zhou, J.T. Grant // Surf. Coat. Technol. 2002. V.155. P.208-213.
  20. Auffan, M. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro / M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, J.-Y. Bottero // Nanotoxicology. 2009. №3. P.161-169.
  21. Filippova, A.D. Low-temperature inactivation of enzyme-like activity of nanocrystalline CeO2 sols / A.D. Filippova, M.M. Sozarukova, A.E. Baranchikov, A.A. Egorova, K.A. Cherednichenko, V.K. Ivanov // Rus. J. Inorganic Chem. 2022. V.67. №12. P.1948-1955. doi: 10.1134/S0036023622601581.
  22. Popov, A.L. Synthesis and biocompatibility study of ceria-mildronate nanocomposite in vitro / A.L. Popov, D.D. Kolmanovich, N.R. Popova, S.S. Sorokina, O.S. Ivanova, N.N. Chukavin, A.B. Shcherbakov, T.O. Kozlova, S.A. Kalashnikova, V.K. Ivanov // Nanosystems: Physics, Chemistry, Mathematics. 2022. V.13(1). P.96-103. doi: 10.17586/2220-8054-2022-13-1-96-103.
  23. Petrova, V.A. Bacterial cellulose composites with polysaccharides filled with nanosized cerium oxide: characterization and cytocompatibility assessment / V.A. Petrova, I.V. Gofman, A.S. Golovkin, A.I. Mishanin, N.V. Dubashynskaya, A.K. Khripunov, E.M. Ivan'kova, E.N. Vlasova, A.L. Nikolaeva, A.E. Baranchikov, Y.A. Skorik, A.V. Yakimansky, V.K. Ivanov // Polymers. 2022. V.14(22). Art.5001. doi: 10.3390/polym14225001.
  24. Huang, S.F. Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster / Huang S.F., Li Z.Y., Wang X.Q., Wang Q.X., Hu F.F. // Ecotoxicol. Environ. Saf. 2010. V.73. №1. P.89-93.
  25. Щербаков, А.Б. Нанокристаллический диоксид церия - перспективный материал для биомедицинского применения / А.Б. Щербаков, В.К. Иванов, Н.М. Жолобак, О.С. Иванова, Е.Ю. Крысанов, А.Е. Баранчиков, Н.Я. Спивак, Ю.Д. Третьяков // Биофизика. 2011. Т.56. №6. С.995-1015.
  26. Karakoti, A.S. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles / A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer // Eur. Appl. Surf.Intern. Analysis. 2011. V.44. №8. P.882-889.
  27. Zhang, Y.W. Facile alcohothermal synthesis, size-dependent ultraviolet absorption and enhanced CO conversion activity of ceria nanocrystals / Zhang Y.W., Si R., Liao C.S., Yan C.H., Xiao C.X., Kou Y. //j. Phys. Chem. B. 2003. V.107. P.10159-10167.
  28. Pierscionek, B.K. Nanoceria have no genotoxic effect on human lens epithelial cells / B.K. Pierscionek, Li Y., A.A. Yasseen, L.M. Colhoun, R.A. Schachar, Chen W. // Nanotechnology. 2010. V.21. №3. Art.035102.
  29. Barreca, D. Nucleation and growth of nanophasic CeO2 thin films by plasma-enhanced CVD / D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, A. Benedetti // Chem. Vap. Depos. 2003. №9. P.199-206.
  30. Balakrishnan, G. A study of microstructural and optical properties of nanocrystalline ceria thinfilms prepared by pulsed laser deposition / G. Balakrishnan, S.T. Sundari, P. Kuppusami, P.C. Mohan, M.P. Srinivasan, E. Mohandas, V. Ganesan, D. Sastikumar // ThinSolid Films. 2011. V.519. P.2520-2526.
  31. Steenberge, S.V. Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films / S.V. Steenberge, W.P. Leroy, D. Depla // ThinSolid Films. 2014. V.553. P.2-6.
  32. Shi, Z. Effect of bias voltage on the properties of CeO2-x coatings prepared by magnetron sputtering / Shi Z., Shum P., Zhou Z., Li L. K.-Y. // Surf. Coat. Technol. 2017. V.326 B. P.411-416. https://doi.org/10.1016/j.surfcoat.2016.11.104.
  33. Shi, Z. Effect of oxygen flow ratio on the wetting behavior, microstructure and mechanical properties of CeO2-x coatings prepared by magnetron sputtering / Shi Z., Shum P., Zhou Z., Li L. K.-Y. // Surf. Coat. Technol. 2017. V.20. P.333-338. https://doi.org/10.1016/j.surfcoat.2016.12.055.
  34. Khalakhan, I. Au-CeO2 nanoporous films/carbon nanotubes composites prepared by magnetron sputtering / I. Khalakhan, M. Vorokhta, M. Chundak, V. Matolin // Appl. Surf. Sci. 2013. V.267. P.150-153. https://doi.org/10.1016/j.apsusc.2012.08.106.
  35. Yamamoto, S. Orientational control of CeO2 films on sapphire substrates grown by magnetron sputtering / S. Yamamoto, M. Sugimoto, H. Koshikawa, T. Hakoda, T. Yamaki //j. Crystal Growth. 2017. V.468. P.262-267. https://doi.org/10.1016/j.jcrysgro.2016.12.038.
  36. Kim, L. Effects of deposition parameters on the crystallinity of CeO2 thin films deposited on Si(100) substrates by r.f.-magnetron sputtering / Kim L., Kim J., Jung D., Park C.-Y., Yang C.-W., Roh Y. // ThinSolid Films. 2000. V.360. №1-2. P.154-158. https://doi.org/10.1016/S0040-6090(99)01087-1.
  37. Kabir, M.S. Structure and properties of hydrophobic CeO2-x coatings synthesized by reactive magnetron sputtering for biomedical applications / M.S. Kabir, P. Munroe, V. Gonciales, Z. Zhou, Z. Xie // Surf. Coat. Technol. 2018. V.349. P.667-676. https://doi.org/10.1016/j.surfcoat.2018.06.031.
  38. Mickan, M. Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties / M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, A.-L. Thomann // Surf. Coat. Technol. 2020. V.398. Art.126095. https://doi.org/10.1016/j.surfcoat.2020.126095.
  39. Park, I. Grain growth and mechanical properties of CeO2-x films deposited on Si(100) substrates by pulsed dc magnetron sputtering / Park I., Lin J., J.J. Moore, M. Khafizov, D. Hurley, Manuel M.V., T. Allen // Surf. Coat. Technol. 2013. V.217. P.34-38. https://doi.org/10.1016/j.surfcoat.2012.11.068.
  40. Кузьмичёв, А.И. Магнетронные распылительные системы: в 2 кн. Кн.1. Введение в физику и технику магнетронного распыления / А.И. Кузьмичёв. - К.: Аверс, 2008. 244 с.
  41. Nasakina, E.O. Study of Co-deposition of tantalum and titanium during the formation of layered composite materials by magnetron sputtering / E.O. Nasakina, M.A. Sudarchikova, K.Y. Demin, A.B. Mikhailova, K.V. Sergienko, S.V. Konushkin, M.A. Kaplan, A.S. Baikin, M.A. Sevostyanov, A.G. Kolmakov // Coatings. 2023. V.13. P.114. https://doi.org/10.3390/coatings13010114.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##