Vliyanie otzhiga na strukturu poverkhnostnykh sloev dioksida tseriya, poluchennykh metodom magnetronnogo raspyleniya

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Методом магнетронного распыления с применением последующего отжига получены нано- и микроразмерные поверхностные слои диоксида церия CeO2 на основе титанового сплава ВТ6. Структуру образцов определяли с помощью сканирующей электронной микроскопии, электронной Оже-спектроскопии, энергодисперсионной спектроскопии и рентгеновской дифрактрометрии. Показаны линейная зависимость толщины поверхностного слоя от длительности его осаждения и нелинейный ее рост при увеличении мощности источника питания, увеличение шероховатости поверхности, расслаивание и разрыхление поверхностного слоя, предположительно связанные с отжигом. В образцах с поверхностным слоем тоньше 750 нм обнаружено формирование подслоя TiO2, Al2O3 и CeVO4, а при слое <300 нм весь диоксид церия расходовался на объединение с диоксидом ванадия до ванадата.

Әдебиет тізімі

  1. Lee, W. Oxygen surface exchange at grain boundaries of oxide ion conductors / W. Lee, H.J. Jung, M.H. Lee, Y.B. Kim, J.S. Park, R. Sinclair, F.B. Prinz // Adv. Funct. Mater. 2012. V.22. P.965-971. doi: 10.1002/adfm.201101996.
  2. Cho, S. Microstructural and electrical properties of Ce0,9Gd0,1O1,95 thin-film electrolyte in solid-oxide fuel cells / Cho S., Yoon J., Kim J.H., Zhang X., A. Manthiram, Wang H. //j. Mater. Res. 2011. V.26. P.854-859. doi: 10.1557/jmr.2010.72.
  3. So¤nderby, S. Strontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cells / S. So¤nderby, P.L. Popa, J. Lu, B.H. Christensen, K.P. Almtoft, L.P. Nielsen, P. Eklund // Adv. Energy Mater. 2013. №3. P.923-929. doi: 10.1002/aenm.201300003.
  4. Tian, D. Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer / Tian D., Lin B., Yang Y., Chen Y., Lu X., Wang Z., Liu W., Traversa E. // Electrochim. Acta. 2016. V.208. P.318-324. doi: 10.1016/j.electacta.2016.04.189.
  5. Jaiswal, N. A brief review on ceria based solid electrolytes for solid oxide fuel cells / N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Uppadhya, O. Parkash //j. Alloys Compd. 2019. V.781. P.984-1005. doi: 10.1016/j.jallcom.2018.12.015.
  6. Raza, R. Functional ceria-based nanocomposites for advanced low-temperature (300-600 °C) solid oxide fuel cell: a comprehensive review / R. Raza, Zhu B., A. Rafique, M.R. Naqvi, P. Lund // Mater. Today Energy. 2020. V.15. Art.100373. doi: 10.1016/j.mtener.2019.100373.
  7. Singh, B. Low temperature solid oxide electrolytes (LT-SOE): a review / B. Singh, S. Ghosh, S. Aich, B. Roy //j. Power Sources. 2017. V.339. P.103-135. doi: 10.1016/j.jpowsour.2016.11.019.
  8. Paier, J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment /j. Paier, C. Penschke, J. Sauer // Chem. Rev. 2013. V.113. P.3949-3985.
  9. Bamwenda, G.R. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ce4a+q and Fe3a+q species / G.R. Bamwenda, H. Arakawa //j. Molecular Catal. A: Chemical. 2000. V.161. P.105-113.
  10. Gao, H. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity / Gao H., Qiao B., Wang T.-J., Wang D., Jin Y. // Industr. Eng. Chem. Res. 2014. V.53. P.189-197.
  11. Torrente-Murciano, L. Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons / L. Torrente-Murciano, A. Gilbank, B. Puertolas, T. Garcia, B. Solsona, D. Chadwick // Appl. Catalys. B: Environ. 2013. V.132, 133. P.116-122.
  12. Vorokhta, M. HAXPES study of CeOx thin film-silicon oxide interface / M. Vorokhta, I. Matolinova¢, M. Dubau, S. Haviar, I. Khalakhan, K. SÚ evcÚÚ ikova¢, T. Mori, H. Yoshikawa, V. Matolin // Appl. Surf. Sci. 2014. V.303. P.46-53.
  13. Hierso, J. Nanostructured ceria based thin films (£1mm) as cathode/electrolyte interfaces /j. Hierso, P. Boy, K. Valle, J. Vulliet, F. Blein, C. Laberty-Robert, C. Sanchez //j. Solid State Chem. 2013. V.197. P.113-119.
  14. Shen, D. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy / Shen D., Ma H., Guo C., Cai J., Li G., He D., Yang Q. //j. Rare Earths. 2013. V.31. P.1208-1213.
  15. Cao, X.Q. Ceramic materials for thermal barrier coatings / X.Q. Cao, R. Vassen, D. Stoever //j. Eur. Ceram. Soc. 2004. V.24. P.1-10.
  16. Lin, K.-S. Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: A review / K.-S. Lin, S. Chowdhury // Intern. J. Mol. Sci. 2010. V.11. P.3226-3251.
  17. Patsalas, P. Optical performance of nanocrystalline transparent ceria films / P. Patsalas, S. Logothetidis, C. Metaxa // Appl. Phys. Lett. 2002. V.81. P.466-468.
  18. Azimi, G. Hydrophobicity of rareearth oxide ceramics / G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi // Nat. Mater. 2013. V.12. P.315-320.
  19. Fahrenholtz, W.G. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys / W.G. Fahrenholtz, M.J. O'Keefe, H. Zhou, J.T. Grant // Surf. Coat. Technol. 2002. V.155. P.208-213.
  20. Auffan, M. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro / M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, J.-Y. Bottero // Nanotoxicology. 2009. №3. P.161-169.
  21. Filippova, A.D. Low-temperature inactivation of enzyme-like activity of nanocrystalline CeO2 sols / A.D. Filippova, M.M. Sozarukova, A.E. Baranchikov, A.A. Egorova, K.A. Cherednichenko, V.K. Ivanov // Rus. J. Inorganic Chem. 2022. V.67. №12. P.1948-1955. doi: 10.1134/S0036023622601581.
  22. Popov, A.L. Synthesis and biocompatibility study of ceria-mildronate nanocomposite in vitro / A.L. Popov, D.D. Kolmanovich, N.R. Popova, S.S. Sorokina, O.S. Ivanova, N.N. Chukavin, A.B. Shcherbakov, T.O. Kozlova, S.A. Kalashnikova, V.K. Ivanov // Nanosystems: Physics, Chemistry, Mathematics. 2022. V.13(1). P.96-103. doi: 10.17586/2220-8054-2022-13-1-96-103.
  23. Petrova, V.A. Bacterial cellulose composites with polysaccharides filled with nanosized cerium oxide: characterization and cytocompatibility assessment / V.A. Petrova, I.V. Gofman, A.S. Golovkin, A.I. Mishanin, N.V. Dubashynskaya, A.K. Khripunov, E.M. Ivan'kova, E.N. Vlasova, A.L. Nikolaeva, A.E. Baranchikov, Y.A. Skorik, A.V. Yakimansky, V.K. Ivanov // Polymers. 2022. V.14(22). Art.5001. doi: 10.3390/polym14225001.
  24. Huang, S.F. Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster / Huang S.F., Li Z.Y., Wang X.Q., Wang Q.X., Hu F.F. // Ecotoxicol. Environ. Saf. 2010. V.73. №1. P.89-93.
  25. Щербаков, А.Б. Нанокристаллический диоксид церия - перспективный материал для биомедицинского применения / А.Б. Щербаков, В.К. Иванов, Н.М. Жолобак, О.С. Иванова, Е.Ю. Крысанов, А.Е. Баранчиков, Н.Я. Спивак, Ю.Д. Третьяков // Биофизика. 2011. Т.56. №6. С.995-1015.
  26. Karakoti, A.S. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles / A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer // Eur. Appl. Surf.Intern. Analysis. 2011. V.44. №8. P.882-889.
  27. Zhang, Y.W. Facile alcohothermal synthesis, size-dependent ultraviolet absorption and enhanced CO conversion activity of ceria nanocrystals / Zhang Y.W., Si R., Liao C.S., Yan C.H., Xiao C.X., Kou Y. //j. Phys. Chem. B. 2003. V.107. P.10159-10167.
  28. Pierscionek, B.K. Nanoceria have no genotoxic effect on human lens epithelial cells / B.K. Pierscionek, Li Y., A.A. Yasseen, L.M. Colhoun, R.A. Schachar, Chen W. // Nanotechnology. 2010. V.21. №3. Art.035102.
  29. Barreca, D. Nucleation and growth of nanophasic CeO2 thin films by plasma-enhanced CVD / D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, A. Benedetti // Chem. Vap. Depos. 2003. №9. P.199-206.
  30. Balakrishnan, G. A study of microstructural and optical properties of nanocrystalline ceria thinfilms prepared by pulsed laser deposition / G. Balakrishnan, S.T. Sundari, P. Kuppusami, P.C. Mohan, M.P. Srinivasan, E. Mohandas, V. Ganesan, D. Sastikumar // ThinSolid Films. 2011. V.519. P.2520-2526.
  31. Steenberge, S.V. Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films / S.V. Steenberge, W.P. Leroy, D. Depla // ThinSolid Films. 2014. V.553. P.2-6.
  32. Shi, Z. Effect of bias voltage on the properties of CeO2-x coatings prepared by magnetron sputtering / Shi Z., Shum P., Zhou Z., Li L. K.-Y. // Surf. Coat. Technol. 2017. V.326 B. P.411-416. https://doi.org/10.1016/j.surfcoat.2016.11.104.
  33. Shi, Z. Effect of oxygen flow ratio on the wetting behavior, microstructure and mechanical properties of CeO2-x coatings prepared by magnetron sputtering / Shi Z., Shum P., Zhou Z., Li L. K.-Y. // Surf. Coat. Technol. 2017. V.20. P.333-338. https://doi.org/10.1016/j.surfcoat.2016.12.055.
  34. Khalakhan, I. Au-CeO2 nanoporous films/carbon nanotubes composites prepared by magnetron sputtering / I. Khalakhan, M. Vorokhta, M. Chundak, V. Matolin // Appl. Surf. Sci. 2013. V.267. P.150-153. https://doi.org/10.1016/j.apsusc.2012.08.106.
  35. Yamamoto, S. Orientational control of CeO2 films on sapphire substrates grown by magnetron sputtering / S. Yamamoto, M. Sugimoto, H. Koshikawa, T. Hakoda, T. Yamaki //j. Crystal Growth. 2017. V.468. P.262-267. https://doi.org/10.1016/j.jcrysgro.2016.12.038.
  36. Kim, L. Effects of deposition parameters on the crystallinity of CeO2 thin films deposited on Si(100) substrates by r.f.-magnetron sputtering / Kim L., Kim J., Jung D., Park C.-Y., Yang C.-W., Roh Y. // ThinSolid Films. 2000. V.360. №1-2. P.154-158. https://doi.org/10.1016/S0040-6090(99)01087-1.
  37. Kabir, M.S. Structure and properties of hydrophobic CeO2-x coatings synthesized by reactive magnetron sputtering for biomedical applications / M.S. Kabir, P. Munroe, V. Gonciales, Z. Zhou, Z. Xie // Surf. Coat. Technol. 2018. V.349. P.667-676. https://doi.org/10.1016/j.surfcoat.2018.06.031.
  38. Mickan, M. Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties / M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, A.-L. Thomann // Surf. Coat. Technol. 2020. V.398. Art.126095. https://doi.org/10.1016/j.surfcoat.2020.126095.
  39. Park, I. Grain growth and mechanical properties of CeO2-x films deposited on Si(100) substrates by pulsed dc magnetron sputtering / Park I., Lin J., J.J. Moore, M. Khafizov, D. Hurley, Manuel M.V., T. Allen // Surf. Coat. Technol. 2013. V.217. P.34-38. https://doi.org/10.1016/j.surfcoat.2012.11.068.
  40. Кузьмичёв, А.И. Магнетронные распылительные системы: в 2 кн. Кн.1. Введение в физику и технику магнетронного распыления / А.И. Кузьмичёв. - К.: Аверс, 2008. 244 с.
  41. Nasakina, E.O. Study of Co-deposition of tantalum and titanium during the formation of layered composite materials by magnetron sputtering / E.O. Nasakina, M.A. Sudarchikova, K.Y. Demin, A.B. Mikhailova, K.V. Sergienko, S.V. Konushkin, M.A. Kaplan, A.S. Baikin, M.A. Sevostyanov, A.G. Kolmakov // Coatings. 2023. V.13. P.114. https://doi.org/10.3390/coatings13010114.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>