STUDY OF STRENGTH, RELAXATION AND CORROSION RESISTANCE OF ULTRAFINE AUSTENITIC STEEL 08H18N10T OBTAINED BY RCU-PRESSING. I. STUDY OF MICROSTRUCTURE AND STRENGTH

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure and mechanical properties at room and elevated temperatures of ultrafine-grained steel 08H18N10Т, obtained by the equal-channel angular pressing method (ECAP) at temperatures of 150 and 450 °C have been studied. It has been established that UFG steel has an increased content of α`-martensite and when it is heated, nanoparticles of the σ-phase are released. It has been shown that ultrafine-grained steel has high tensile strength and good ductility. A decrease in the Hall-Petch coefficient of ultrafine-grained steel was noted, which is due to the fragmentation of δ-ferrite particles during ECAP.

About the authors

V. I Kopylov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru

V. N Chuvil'deev

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

A. V Nokhrin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

M. Yu Gryaznov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

S. V Shotin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

K. E Smetanina

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

N. Yu Tabachkova

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Technological University "MISiS"

Author for correspondence.
Email: eliz@imet.ac.ru

References

  1. Сагарадзе, В.В. Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В.В. Сагарадзе, Ю.И. Филиппов, М.Ф. Матвиенко [и др.]. - Екатеринбург: Изд. УрО РАН, 2004. 228 с.
  2. Сагарадзе, В.В. Упрочнение и свойства аустенитных сталей / В.В. Сагарадзе, А.И. Уваров. - Екатеринбург: Изд. ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
  3. J‡rvenp‡‡, A. Processing and properties of reversion-treated austenitic stainless steels / A. J‡rvenp‡‡, M. Jaskari, A. Kisko, P. Karjalainen // Metals. 2020. V.10. Is.2. P.281.
  4. Sohrabi, M.J. Deformation-induced martensite in austenitic stainless steels: A review / M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh // Arch. Civil Mechan. Eng. 2020. V.20. Is.3. P.124.
  5. Lo, K.H. Recent developments in stainless steels / K.H. Lo, C.H. Shek, J.K.L. Lai // Mater. Sci. Eng. R. 2009. V.65. Is.4-6. P.39-104.
  6. Panov, D.O. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation / D.O. Panov, R.S. Chernichenko, S.V. Naumov, A.S. Pertcev, N.D. Stepanov, S.V. Zherebtsov, G.A. Salishchev // Mater. Letters. 2021. V.303. Art.130585.
  7. Rybal'chenko, O.V. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation / O.V. Rybal'chenko, S.V. Dobatkin, L.M. Kaputkina [et al.] // Mater. Sci. Eng. A. 2004. V.387-389. Is.1-2. P.244-248.
  8. Добаткин, С.В. Формирование субмикрокристаллической структуры в аустенитной стали 08Х18Н10Т при РКУ прессовании и нагреве / С.В. Добаткин, О.В. Рыбальченко, Г.И. Рааб // Металлы. 2006. №1. С.48-54.
  9. Dobatkin, S.V. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating / S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab // Mater. Sci. Eng. A. 2007. V.463. Is.1-2. P.41-45.
  10. Добаткин, С.В. Структура и усталостная прочность стали 08Х18Н10Т после равноканального углового прессования и нагрева / С.В. Добаткин, В.Ф. Терентьев, В. Скротцки [и др.] // Металлы. 2012. №6. С.45-56.
  11. Косицына, И.И. Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования / И.И. Косицына, В.В. Сагарадзе, В.И. Копылов // ФММ. 1999. Т.88. №5. С.84-89.
  12. Dobatkin, S.V. Formation of fully austenitic ultrafine-grained high strength state in metastable Cr-Ni-Ti stainless steel by severe plastic deformation / S.V. Dobatkin, O.V. Rybalchenko, N.A. Enikeev [et al.] // Mater. Letters. 2016. V.166. P.276-279.
  13. Panov, D. Mechanisms of the reverse martensite-to-austenite transformation in a metastable austenitic stainless steel / D. Panov, E. Kudryavtsev, R. Chernichenko, A. Smirnov, N. Stepanov, Y. Simonov, S. Zherebtsov, G. Salishchev // Metals. 2021. V.11. Is.4. P.599.
  14. Krawczynska, A.T. Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion / A.T. Krawczynska, W. Chrominski, E. Ura-Binczyk, M. Kulczyk, M. Lewandowska // Mater. Design. 2017. V.136. P.34-44.
  15. Tikhonova, M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment / M. Tikhonova, R. Kaibyshev, A. Belyakov // Advanc. Eng. Mater. 2018. V.20. Is.7. Art.1700960.
  16. Qu, S. Tensile and compressive properties of AISI 304L stainless subjected to equal channel angular pressing / S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang // Mater. Sci. Eng. A. 2008. V.475. Is.1-2. P.207-216.
  17. Huang, C.X. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by Equal-Channel Angular Pressing / C.X. Huang, G. Yang, C. Wang, Z.F. Zhang, S.D. Wu // Met. Mater. Trans. A. 2011. V.42. Is.7. P.2061-2071.
  18. Tirekar, S. Towards engineering of mechanical properties through stabilization of austenite in ultrafine grained martensite-austenite dual phase steel processed by accumulative roll bonding / S. Tirekar, H.R. Jafarian, A.R. Eivani // Mater. Sci. Eng. A. 2017. V.684. P.120-126.
  19. Liu, M. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered of recrystallized nanostructures / M. Liu, W. Gong, R. Zheng, J. Li, Z. Zhang, S. Gao, C. Ma, N. Tsuji // Acta Materialia. 2022. V.226. Art.117629.
  20. Xiao, X.Intergranular precipitation behavior and its influence on the stress relaxation cracking susceptibility of Super304H austenitic stainless steel weld metal during long-term aging / X. Xiao, D. Li, Y. Li, S. Lu // Mater. Characterization. 2021. V.178. Art.111309.
  21. Yamashita, M. The stress-relaxation behavior of type 304 stainless steel / M. Yamashita, Y. Wada // Intern. J. Pressure Vessels and Piping. 1990. V.42. Is.2. P.203-216.
  22. Tendo, M. Stress relaxation behavior at high-tension bolted connections of stainless-steel plates / M. Tendo, K. Yamada, Y. Shimura //j. Eng. Mater. Technol. 2001. V.123. Is.2. P.198-202.
  23. Бордзыка, А.М. Релаксация напряжений в металлах и сплавах / А.М. Бордзыка, Л.Б. Гецов. - М.: Наука, 1978. 256 с.
  24. Povolo, F. Stress relaxation in bending of type AISI304 stainless steel at 773 and 823 K / F. Povolo, R.J. Tinivella, J.F. Reggiardo, G.B. Botteri //j. Mater. Sci. 1992. V.27. P.1505-1513.
  25. Сегал, В.М. Процессы пластического структурообразования металлов / В.М. Сегал, В.И. Резников, В.И. Копылов [и др.] - Минск: Наука и техника, 1994. 232 с.
  26. Segal, V.M. Fundamentals and engineering of severe plastic deformation / V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. - N.Y.: Nova Science Publishers, 2010. 542 p.
  27. Jeong, S.W.Comparative study of hardening mechanisms during aging of a 304 stainless steel containing a¢-martensite / S.W. Jeong, U.G. Kang, J.Y. Choi, W.J. Nam //j. Mater. Eng. Performance. 2012. V.21. Is.9. P.1937-1942.
  28. Zergani, A. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading / A. Zergani, H. Mirzadeh, R. Mahmudi // Mater. Sci. Eng. A. 2020. V.791. Art.139667.
  29. Mola, J. Dynamic strain aging mechanisms in a metastable austenitic stainless steel /j. Mola, G. Luan, Q. Huang, C. Ullrich, O. Volkova, Y. Estrin // Acta Materialia. 2021. V.212. Art.116888.
  30. Du, C. A 2.9 GPa strength nano-gradient and nano-precipitated 304L-type austenitic stainless steel / C. Du, G. Liu, B. Sun, S. Xin, T. Shen // Materials. 2020. V.13. Is.23. P.5382.
  31. Kisko, A. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel / A. Kisko, R.D.K. Misra, J. Talonen, L.P. Karjalainen // Mater. Sci. Eng. A. 2013. V.578. P.408-416.
  32. Valiev, R.Z. Principles of equal-channel angular pressing as a processing tool for grain refinement / R.Z. Valiev, T.G. Langdon // Progress in Mater. Sci. 2006. V.51. Is.7. P.881-981.
  33. Чувильдеев, В.Н. Предел измельчения зерен при РКУ-деформации / В.Н. Чувильдеев, В.И. Копылов // Металлы. 2004. №1. С.22-35.
  34. Чувильдеев, В.Н. Предел диспергирования при РКУ-деформации. Влияние температуры / В.Н. Чувильдеев, В.И. Копылов, А.В. Нохрин, И.М. Макаров, Ю.Г. Лопатин // ДАН. 2004. Т.396. №3. С.332-338.
  35. Yamashita, A. Improving the mechanical properties of magnesium and magnesium alloy through severe plastic deformation / A. Yamashita, Z. Horita, T.G. Langdon // Mater. Sci. Eng. A. 2001. V.300. Is.1-2. P.142-147.
  36. Shaeri, M.H. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys / M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein // Progress in Natural Science: Materials International. 2016. V.26. Is.2. P.182-191.
  37. Shen, Y.F. Twinning and martensite in a 304 austenitic stainless steel / Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo // Mater. Sci. Eng. A. 2012. V.552. P.514-522.
  38. Talonen, J. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels /j. Talonen, H. H‡nninen // Acta Materialia. 2007. V.55. Is.18. P.6108-6118.
  39. Rhouma, A.B. Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700 °C / A.B. Rhouma, T. Amadou, H. Sidhom, C. Braham //j. Alloys Comp. 2017. V.708. P.871-886.
  40. Tseng, C.C. Fracture and the formation of sigma phase, M23C6, and austenite from delta-ferrite in an AISI 304L stainless steel / C.C. Tseng, Y. Shen, S.W. Thompson, M.C. Mataya, G. Krauss // Met. Mater. Trans. A. 1994. V.25. Is.6. P.1147-1158.
  41. Zhao, L. d-Ferrite transformation mechanism and its effect on mechanical properties of 316H weld metal / L. Zhao, S. Wei, D. Wu, D. Gao, S. Lu //j. Mater. Sci. Technol. 2020. V.57. P.33-42.
  42. Чувильдеев, В.Н. Неравновесные границы зерен в металлах. Теория и приложения / В.Н. Чувильдеев. - М.: Физматлит, 2004. 304 с.
  43. Разумов, И.К. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации / И.К. Разумов, А.Е. Ермаков, Ю.Н. Горностырев, Б.Б. Страумал // Успехи физических наук. 2020. Т.190. №8. С.785-810.
  44. Мартин, Дж. Стабильность микроструктуры металлических систем / Дж. Мартин, Р. Доэрти. - М.: Атомиздат, 1978. 280 с.
  45. Фрост, Г.Дж. Карты механизмов деформации / Г.Дж. Фрост, М.Ф. Эшби. - Челябинск: Металлургия, 1989. 328 с.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies