STUDY OF STRENGTH, RELAXATION AND CORROSION RESISTANCE OF ULTRAFINE AUSTENITIC STEEL 08H18N10T OBTAINED BY RCU-PRESSING. I. STUDY OF MICROSTRUCTURE AND STRENGTH

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The microstructure and mechanical properties at room and elevated temperatures of ultrafine-grained steel 08H18N10Т, obtained by the equal-channel angular pressing method (ECAP) at temperatures of 150 and 450 °C have been studied. It has been established that UFG steel has an increased content of α`-martensite and when it is heated, nanoparticles of the σ-phase are released. It has been shown that ultrafine-grained steel has high tensile strength and good ductility. A decrease in the Hall-Petch coefficient of ultrafine-grained steel was noted, which is due to the fragmentation of δ-ferrite particles during ECAP.

Sobre autores

V. Kopylov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru

V. Chuvil'deev

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

A. Nokhrin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

M. Gryaznov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

S. Shotin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

K. Smetanina

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: eliz@imet.ac.ru

N. Tabachkova

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Technological University "MISiS"

Autor responsável pela correspondência
Email: eliz@imet.ac.ru

Bibliografia

  1. Сагарадзе, В.В. Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В.В. Сагарадзе, Ю.И. Филиппов, М.Ф. Матвиенко [и др.]. - Екатеринбург: Изд. УрО РАН, 2004. 228 с.
  2. Сагарадзе, В.В. Упрочнение и свойства аустенитных сталей / В.В. Сагарадзе, А.И. Уваров. - Екатеринбург: Изд. ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
  3. J‡rvenp‡‡, A. Processing and properties of reversion-treated austenitic stainless steels / A. J‡rvenp‡‡, M. Jaskari, A. Kisko, P. Karjalainen // Metals. 2020. V.10. Is.2. P.281.
  4. Sohrabi, M.J. Deformation-induced martensite in austenitic stainless steels: A review / M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh // Arch. Civil Mechan. Eng. 2020. V.20. Is.3. P.124.
  5. Lo, K.H. Recent developments in stainless steels / K.H. Lo, C.H. Shek, J.K.L. Lai // Mater. Sci. Eng. R. 2009. V.65. Is.4-6. P.39-104.
  6. Panov, D.O. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation / D.O. Panov, R.S. Chernichenko, S.V. Naumov, A.S. Pertcev, N.D. Stepanov, S.V. Zherebtsov, G.A. Salishchev // Mater. Letters. 2021. V.303. Art.130585.
  7. Rybal'chenko, O.V. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation / O.V. Rybal'chenko, S.V. Dobatkin, L.M. Kaputkina [et al.] // Mater. Sci. Eng. A. 2004. V.387-389. Is.1-2. P.244-248.
  8. Добаткин, С.В. Формирование субмикрокристаллической структуры в аустенитной стали 08Х18Н10Т при РКУ прессовании и нагреве / С.В. Добаткин, О.В. Рыбальченко, Г.И. Рааб // Металлы. 2006. №1. С.48-54.
  9. Dobatkin, S.V. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating / S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab // Mater. Sci. Eng. A. 2007. V.463. Is.1-2. P.41-45.
  10. Добаткин, С.В. Структура и усталостная прочность стали 08Х18Н10Т после равноканального углового прессования и нагрева / С.В. Добаткин, В.Ф. Терентьев, В. Скротцки [и др.] // Металлы. 2012. №6. С.45-56.
  11. Косицына, И.И. Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования / И.И. Косицына, В.В. Сагарадзе, В.И. Копылов // ФММ. 1999. Т.88. №5. С.84-89.
  12. Dobatkin, S.V. Formation of fully austenitic ultrafine-grained high strength state in metastable Cr-Ni-Ti stainless steel by severe plastic deformation / S.V. Dobatkin, O.V. Rybalchenko, N.A. Enikeev [et al.] // Mater. Letters. 2016. V.166. P.276-279.
  13. Panov, D. Mechanisms of the reverse martensite-to-austenite transformation in a metastable austenitic stainless steel / D. Panov, E. Kudryavtsev, R. Chernichenko, A. Smirnov, N. Stepanov, Y. Simonov, S. Zherebtsov, G. Salishchev // Metals. 2021. V.11. Is.4. P.599.
  14. Krawczynska, A.T. Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion / A.T. Krawczynska, W. Chrominski, E. Ura-Binczyk, M. Kulczyk, M. Lewandowska // Mater. Design. 2017. V.136. P.34-44.
  15. Tikhonova, M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment / M. Tikhonova, R. Kaibyshev, A. Belyakov // Advanc. Eng. Mater. 2018. V.20. Is.7. Art.1700960.
  16. Qu, S. Tensile and compressive properties of AISI 304L stainless subjected to equal channel angular pressing / S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang // Mater. Sci. Eng. A. 2008. V.475. Is.1-2. P.207-216.
  17. Huang, C.X. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by Equal-Channel Angular Pressing / C.X. Huang, G. Yang, C. Wang, Z.F. Zhang, S.D. Wu // Met. Mater. Trans. A. 2011. V.42. Is.7. P.2061-2071.
  18. Tirekar, S. Towards engineering of mechanical properties through stabilization of austenite in ultrafine grained martensite-austenite dual phase steel processed by accumulative roll bonding / S. Tirekar, H.R. Jafarian, A.R. Eivani // Mater. Sci. Eng. A. 2017. V.684. P.120-126.
  19. Liu, M. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered of recrystallized nanostructures / M. Liu, W. Gong, R. Zheng, J. Li, Z. Zhang, S. Gao, C. Ma, N. Tsuji // Acta Materialia. 2022. V.226. Art.117629.
  20. Xiao, X.Intergranular precipitation behavior and its influence on the stress relaxation cracking susceptibility of Super304H austenitic stainless steel weld metal during long-term aging / X. Xiao, D. Li, Y. Li, S. Lu // Mater. Characterization. 2021. V.178. Art.111309.
  21. Yamashita, M. The stress-relaxation behavior of type 304 stainless steel / M. Yamashita, Y. Wada // Intern. J. Pressure Vessels and Piping. 1990. V.42. Is.2. P.203-216.
  22. Tendo, M. Stress relaxation behavior at high-tension bolted connections of stainless-steel plates / M. Tendo, K. Yamada, Y. Shimura //j. Eng. Mater. Technol. 2001. V.123. Is.2. P.198-202.
  23. Бордзыка, А.М. Релаксация напряжений в металлах и сплавах / А.М. Бордзыка, Л.Б. Гецов. - М.: Наука, 1978. 256 с.
  24. Povolo, F. Stress relaxation in bending of type AISI304 stainless steel at 773 and 823 K / F. Povolo, R.J. Tinivella, J.F. Reggiardo, G.B. Botteri //j. Mater. Sci. 1992. V.27. P.1505-1513.
  25. Сегал, В.М. Процессы пластического структурообразования металлов / В.М. Сегал, В.И. Резников, В.И. Копылов [и др.] - Минск: Наука и техника, 1994. 232 с.
  26. Segal, V.M. Fundamentals and engineering of severe plastic deformation / V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. - N.Y.: Nova Science Publishers, 2010. 542 p.
  27. Jeong, S.W.Comparative study of hardening mechanisms during aging of a 304 stainless steel containing a¢-martensite / S.W. Jeong, U.G. Kang, J.Y. Choi, W.J. Nam //j. Mater. Eng. Performance. 2012. V.21. Is.9. P.1937-1942.
  28. Zergani, A. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading / A. Zergani, H. Mirzadeh, R. Mahmudi // Mater. Sci. Eng. A. 2020. V.791. Art.139667.
  29. Mola, J. Dynamic strain aging mechanisms in a metastable austenitic stainless steel /j. Mola, G. Luan, Q. Huang, C. Ullrich, O. Volkova, Y. Estrin // Acta Materialia. 2021. V.212. Art.116888.
  30. Du, C. A 2.9 GPa strength nano-gradient and nano-precipitated 304L-type austenitic stainless steel / C. Du, G. Liu, B. Sun, S. Xin, T. Shen // Materials. 2020. V.13. Is.23. P.5382.
  31. Kisko, A. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel / A. Kisko, R.D.K. Misra, J. Talonen, L.P. Karjalainen // Mater. Sci. Eng. A. 2013. V.578. P.408-416.
  32. Valiev, R.Z. Principles of equal-channel angular pressing as a processing tool for grain refinement / R.Z. Valiev, T.G. Langdon // Progress in Mater. Sci. 2006. V.51. Is.7. P.881-981.
  33. Чувильдеев, В.Н. Предел измельчения зерен при РКУ-деформации / В.Н. Чувильдеев, В.И. Копылов // Металлы. 2004. №1. С.22-35.
  34. Чувильдеев, В.Н. Предел диспергирования при РКУ-деформации. Влияние температуры / В.Н. Чувильдеев, В.И. Копылов, А.В. Нохрин, И.М. Макаров, Ю.Г. Лопатин // ДАН. 2004. Т.396. №3. С.332-338.
  35. Yamashita, A. Improving the mechanical properties of magnesium and magnesium alloy through severe plastic deformation / A. Yamashita, Z. Horita, T.G. Langdon // Mater. Sci. Eng. A. 2001. V.300. Is.1-2. P.142-147.
  36. Shaeri, M.H. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys / M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein // Progress in Natural Science: Materials International. 2016. V.26. Is.2. P.182-191.
  37. Shen, Y.F. Twinning and martensite in a 304 austenitic stainless steel / Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo // Mater. Sci. Eng. A. 2012. V.552. P.514-522.
  38. Talonen, J. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels /j. Talonen, H. H‡nninen // Acta Materialia. 2007. V.55. Is.18. P.6108-6118.
  39. Rhouma, A.B. Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700 °C / A.B. Rhouma, T. Amadou, H. Sidhom, C. Braham //j. Alloys Comp. 2017. V.708. P.871-886.
  40. Tseng, C.C. Fracture and the formation of sigma phase, M23C6, and austenite from delta-ferrite in an AISI 304L stainless steel / C.C. Tseng, Y. Shen, S.W. Thompson, M.C. Mataya, G. Krauss // Met. Mater. Trans. A. 1994. V.25. Is.6. P.1147-1158.
  41. Zhao, L. d-Ferrite transformation mechanism and its effect on mechanical properties of 316H weld metal / L. Zhao, S. Wei, D. Wu, D. Gao, S. Lu //j. Mater. Sci. Technol. 2020. V.57. P.33-42.
  42. Чувильдеев, В.Н. Неравновесные границы зерен в металлах. Теория и приложения / В.Н. Чувильдеев. - М.: Физматлит, 2004. 304 с.
  43. Разумов, И.К. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации / И.К. Разумов, А.Е. Ермаков, Ю.Н. Горностырев, Б.Б. Страумал // Успехи физических наук. 2020. Т.190. №8. С.785-810.
  44. Мартин, Дж. Стабильность микроструктуры металлических систем / Дж. Мартин, Р. Доэрти. - М.: Атомиздат, 1978. 280 с.
  45. Фрост, Г.Дж. Карты механизмов деформации / Г.Дж. Фрост, М.Ф. Эшби. - Челябинск: Металлургия, 1989. 328 с.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies