Oxidative stress and inflammation in COVID-19 pathogenesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study discusses the role of oxidative stress and inflammation in the development of severe acute respiratory syndrome (SARS) associated with COVID-19 caused by the novel SARS-CoV-2 coronavirus. An analysis of the literature revealed that the development of respiratory viral infections, including COVID-19, is usually accompanied by the accumulation of acidic metabolic products in the blood and tissues and, accordingly, oxidative stress and increased levels of cytokines. In this regard, it seems appropriate to use the second-generation low-toxic antioxidant Ethoxidol, manufactured in Russia, which reduces the intensity of inflammation, and also improves blood oxygen saturation.

作者简介

Vladimir Kukes

Scientific Centre for Expert Evaluation of Medicinal Products; I.M. Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: elmed@yandex.ru
ORCID iD: 0000-0002-5112-6928

doctor of medical sciences, Professor, Academician, Chief Science Officer “Scientific Centre for Expert Evaluation of Medicinal Products”; Professor, Department of Clinical Pharmacology “I.M. First Moscow State Medical University (Sechenov University)”

俄罗斯联邦, Moscow

Olga Parfenova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: oparfenova22@gmail.com
ORCID iD: 0000-0002-0079-2832
俄罗斯联邦, Moscow

Nikita Sidorov

I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute of vaccines and serums

Email: deel@yandex.ru
ORCID iD: 0000-0003-1257-8718
俄罗斯联邦, Moscow

Yuri Olefir

Scientific Centre for Expert Evaluation of Medicinal Products

Email: olefir@expmed.ru
ORCID iD: 0000-0001-7652-4642

MD, PhD, DSc

俄罗斯联邦, Moscow

Albina Gazdanova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: gaa71@bk.ru
ORCID iD: 0000-0001-7099-4547

MD, PhD

俄罗斯联邦, Moscow

参考

  1. Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384-387. doi: 10.1016/j.arcmed.2020.04.019.
  2. Kolesnikova L.I., Darenskaya M.A., Kolesnikov S.I. Free radical oxidation: a pathophysiologist’s view. Byulleten’ sibirskoy meditsiny. 2017;16(4):16-29. (in Russian) doi: 10.20538/1682-0363-2017-4-16-29.
  3. Woyke S., Rauch S., Strohle M., Gattere H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr. 2020; S0261-5614(20)30210-7. doi: 10.1016/j.clnu.2020.04.036.
  4. Muronets V.I., Fokina K.V., Yazykova M.Yu. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes. Biokhimiya. 2000;65(4): 547-52. (in Russian)
  5. Zhao M., Wang M., Zhang J., Ye J., Xu Y., Wang Z. et al. Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother. 2020;127:110230. doi: 10.1016/j.biopha.2020.110230.
  6. Divani A.A., Andalib S., Di Napoli M., Lattanzi S., Hussain M.S., Biller J. et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis. 2020;29(8):104941. doi: 10.1016/j.jstrokecerebrovasdis.2020.104941.
  7. Sousa T., Oliveira S., Afonso J., Morato M., Patinha D., Fraga S. et al. Role of H2O2 in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol. 2012;166(8):2386-401. Doi: 10.1111/j. 1476-5381.2012.01957.x.
  8. Bloise E., Ciarmela P., Dela Cruz C., Luisi S., Petraglia F., Reis F.M. Activin A in mammalian physiology. Physiol Rev. 2019;99(1):739-80. doi: 10.1152/physrev.00002.2018.
  9. Hardy C.L., King S.J., Mifsud N.A., Hedger M.P., Phillips D.J., Mackay F. et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology. Immunol Cell Biol. 2015;93(6):567-74. doi: 10.1038/icb.2015.7.
  10. Hansen J.S., Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016;433:87-93. doi: 10.1016/j.mce.2016.06.002.
  11. Kukes V.G., Olefir Y.V., Romanov B.K., Prokofiev A.B., Parfenova E.V., Boldyreva M.A. et al. The mechanism of action of follistatin-like protein-1 (FSTL-1). Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. 2019;9(4):256-60. (in Russian) doi: 10.30895/1991-2919-2019-9-4-256-260.
  12. Romanov B.K. Coronavirus disease COVID-2019. Bezopasnost’ i risk farmakoterapii. 2020;8(1):3-8. (in Russian) doi: 10.30895/2312-7821-2020-8-1-3-8.
  13. Kukes V.G. The results of a study of a domestic drug, an antioxidant of the second generation of ethoxidol. [Itogi issledovaniya otechestvennogo preparata, antioksidanta II pokoleniya etoksidola]. Moscow: MAKFiF; 2017. (in Russian)
  14. Kukes V.G., Parfenova O.K., Romanov B.K., Prokof’ev A.B., Parfenova E.V., Sidorov N.G. et al. The mechanism of action of ethoxidol on oxidative stress indices in heart failure and hypotension. Sovremennye tekhnologii v meditsine. 2020;12(2):67-73. (in Russian) doi: 10.17691/stm2020.12.2.08.

版权所有 © Eco-Vector, 2020


 


##common.cookie##