Diacylglycerides as nutrition components or precursors of carcinogens: a critical view on an ambular question

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Obesity is considered as a noninfectious epidemic worldwide. Metabolic disorders associated with the accumulation of adipose tissue lead to obesity-associated diabetes mellitus and cardiovascular diseases. Diet is a component of treatment of diseases associated with obesity. The most commonly used diets are caloric restriction by reducing fat in the diet. Over the years, there have been several attempts to use diacylglycerol (DAG) as components of dietary oils owing to its ability to suppress the accumulation of visceral fat and reduce postprandial levels of triacylglycerol and cholesterol and glucose in the blood serum. However, in 2009, it was found that when oil was processed at high temperatures during physical refining, DAG-enriched oil had the highest levels of potentially harmful glycidyl esters compared to conventional refined fats and oils. The study of the negative effects of glycidyl esters has prompted the food industry, which has traditionally used oil, to focus on strategies in preventing or mitigating these effects by changing the refining process or modifying deodorization equipment to reduce or eliminate process contaminants.

作者简介

Andrey Budnevsky

Voronezh State Medical University named after N.N. Burdenko

Email: budnev@list.ru
ORCID iD: 0000-0002-1171-2746
SPIN 代码: 7381-0612
Researcher ID: L-7459-2016

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, Voronezh

Evgeniy Ovsyannikov

Voronezh State Medical University named after N.N. Burdenko

Email: ovses@yandex.ru
ORCID iD: 0000-0002-8545-6255
SPIN 代码: 7999-0433

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, Voronezh

Valery Popov

Voronezh State Medical University named after N.N. Burdenko

Email: 9038504004@mail.ru
ORCID iD: 0000-0001-5386-9082
SPIN 代码: 8896-9019

MD, Dr. Sci. (Medicine), corresponding member of RAS, professor

俄罗斯联邦, Voronezh

Elena Drobysheva

Voronezh State Medical University named after N.N. Burdenko

Email: e.drobysheva76@mail.ru
ORCID iD: 0000-0003-2132-8374
SPIN 代码: 5342-2742

MD, Cand. Sci. (Medicine), associate professor

俄罗斯联邦, Voronezh

Sofia Feigelman

Voronezh State Medical University named after N.N. Burdenko

编辑信件的主要联系方式.
Email: s.feygelman@gmail.com
ORCID iD: 0000-0003-4128-6044
SPIN 代码: 1645-1203
俄罗斯联邦, Voronezh

参考

  1. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines “Management of obesity and its comorbidities”. Obesity and Metabolism. 2021;18(1):5–99. EDN: AHSBSE doi: 10.14341/omet12714
  2. Leskova IV, Ershova EV, Nikitina EA, et al. Obesity in Russia: modern view in the light of a social problems. Obesity and Metabolism. 2019;16(1):20–26. EDN: KDEROH doi: 10.14341/omet9988
  3. Durrer Schutz D, Busetto L, Dicker D, et al. European practical and patient-centred guidelines for adult obesity management in primary care. Obes Facts. 2019;12(1):40–66. doi: 10.1159/000496183
  4. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl. 2):S102–S138. Corrected and republished from: Circulation. 2014;129(25 Suppl. 2):S139–S140. doi: 10.1161/01.cir.0000437739.71477.ee
  5. Saito S, Fukuhara I, Osaki N, et al. Consumption of alpha-linolenic acid-enriched diacylglycerol reduces visceral fat area in overweight and obese subjects: a randomized, double-blind controlled, parallel-group designed trial. J Oleo Sci. 2016;65(7):603–611. doi: 10.5650/jos.ess16059
  6. Zheng JS, Wang L, Lin M, et al. BMI status influences the response of insulin sensitivity to diacylglycerol oil in Chinese type 2 diabetic patients. Asia Pac J Clin Nutr. 2015;24(1):65–72. doi: 10.6133/apjcn.2015.24.1.01
  7. Takase H. Metabolism of diacylglycerol in humans. Asia Pac J Clin Nutr. 2007;16 Suppl. 1:398-403.
  8. Masukawa Y, Shiro H, Nakamura S, et al. A new analytical method for the quantification of glycidol fatty acid esters in edible oils. J Oleo Sci. 2010;59(2):81–88. doi: 10.5650/jos.59.81
  9. Matsuo N. Nutritional characterisitcs and health benefits of diacylglycerol in foods. Food Science and Technology Research. 2004;10(2):103–110. doi: 10.3136/fstr.10.103
  10. Taguchi H, Watanabe H, Onizawa K, et al. Double-Blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr. 2000;19(6):789–796. doi: 10.1080/07315724.2000.10718079
  11. Taguchi H, Omachi T, Nagao T, et al. Dietary diacylglycerol suppresses high fat diet-induced hepatic fat accumulation and microsomal triacylglycerol transfer protein activity in rats. J Nutr Biochem. 2002;13(11):678–683. doi: 10.1016/s0955-2863(02)00212-7
  12. Dhara R, Dhar P, Ghosh M. Dietary effects of diacylglycerol rich mustard oil on lipid profile of normocholesterolemic and hypercholesterolemic rats. J Food Sci Technol. 2013;50(4):678–686. doi: 10.1007/s13197-011-0388-y
  13. Tang TK, Beh BK, Alitheen NBM, et al. Suppression of visceral adipose tissue by palm kernel and soy-canola diacylglycerol in C57BL/6N mice. European Journal of Lipid Science and Technology. 2013;115(11):1266–1273. doi: 10.1002/ejlt.201300111
  14. Prabhavathi Devi BLA, Gangadhar KN, Prasad RBN, et al. Nutritionally enriched 1,3-diacylglycerol-rich oil: low calorie fat with hypolipidemic effects in rats. Food Chem. 2018;248:210–216. doi: 10.1016/j.foodchem.2017.12.066
  15. Anikisetty M, Gopala Krishna AG, Panneerselvam V, Kamatham AN. Diacylglycerol (DAG) rich rice bran and sunflower oils modulate lipid profile and cardiovascular risk factors in Wistar rats. J of Functional Foods. 2018;40(1):117–127. doi: 10.1016/j.jff.2017.10.049
  16. Ando Y, Saito S, Yamanaka N, et al. Alpha linolenic acid-enriched diacylglycerol consumption enhances dietary fat oxidation in healthy subjects: a randomized double-blind controlled trial. J Oleo Sci. 2017;66(2):181–185. doi: 10.5650/jos.ess16183
  17. Murase T, Aoki M, Tokimitsu I. Supplementation with a-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of b-oxidation in zucker fatty rats. Biochim Biophys Acta. 2005;1733(2-3):224–231. doi: 10.1016/j.bbalip.2004.12.015
  18. Yasukawa T, Yasunaga K. Nutritional functions of dietary diacylglycerols. J Oleo Sci. 2001;50(5):427–32. doi: 10.5650/jos.50.427
  19. Maki KC, Davidson MH, Tsushima R, et al. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am J Clin Nutr. 2002;76(6):1230–1236. doi: 10.1093/ajcn/76.6.1230
  20. Eom TK, Kong CS, Byun HG, et al. Lipase catalytic synthesis of diacylglycerol from tuna oil and its antiobesity effect in C57BL/6J mice. Process Biochemistry. 2010;45(5):738–743. doi: 10.1016/j.procbio.2010.01.012
  21. Kim H, Choe JH, Choi JH, et al. Medium-chain enriched diacylglycerol (MCE-DAG) oil decreases body fat mass in mice by increasing lipolysis and thermogenesis in adipose tissue. Lipids. 2017;52(8):665–673. doi: 10.1007/s11745-017-4277-7
  22. Mori Y, Nakagiri H, Kondo H, et al. Dietary diacylglycerol reduces postprandial hyperlipidemia and ameliorates glucose intolerance in otsuka Long-Evans Tokushima fatty (OLETF) rats. Nutrition. 2005;21(9):933–939. doi: 10.1016/j.nut.2005.01.009
  23. Choi HS, Park SJ, Lee ZH, Lim SK. The effects of a high fat diet containing diacylglycerol on bone in C57BL/6J mice. Yonsei Med J. 2015;56(4):951–960. doi: 10.3349/ymj.2015.56.4.951
  24. Teramoto T, Watanabe H, Ito K, et al. Significant effects of diacylglycerol on body fat and lipid metabolism in patients on hemodialysis. Clin Nutr. 2004;23(5):1122–1126. doi: 10.1016/j.clnu.2004.02.005
  25. Taguchi H, Nagao T, Watanabe H, et al. Energy value and digestibility of dietary oil containing mainly 1, 3-diacylglycerol are similar to those of triacylglycerol. Lipids. 2001;36(4):379–382. Corrected and republished from: Lipids. 2003;38(8):893. doi: 10.1007/s11745-001-0731-7
  26. Flickinger B, Matsuo N. Nutritional characteristics of DAG oil. Lipids. 2003;38(2):129–132. doi: 10.1007/s11745-003-1042-8
  27. Morita O, Soni MG. Safety assessment of diacylglycerol oil as an edible oil: a review of the published literature. Food Chem Toxicol. 2009;47(1):9–21. doi: 10.1016/j.fct.2008.09.044
  28. Yasunaga K, Glinsmann WH, Seo Y, et al. Safety aspects regarding the consumption of high-dose dietary diacylglycerol oil in men and women in a double-blind controlled trial in comparison with consumption of a triacylglycerol control oil. Food Chem Toxicol. 2004;42(9):1419–1429. doi: 10.1016/j.fct.2004.04.003
  29. Kasamatsu T, Ogura R, Ikeda N, et al. Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food Chem Toxicol. 2005;43(2): 253–260. doi: 10.1016/j.fct.2004.10.001
  30. Bakhiya N, Abraham K, Gürtler R, et al. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol Nutr Food Res. 2011;55(4):509–521. doi: 10.1002/mnfr.201000550
  31. Craft BD, Chiodini A, Garst J, Granvogl M. Fatty acid esters of monochloropropanediol (MCPD) and glycidol in refined edible oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(1):46–51. doi: 10.1080/19440049.2012.709196
  32. Crews C, Chiodini A, Granvogl M, et al. Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: a review and future perspectives. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(1):11–45. doi: 10.1080/19440049.2012.720385
  33. MacMahon S, Begley TH, Diachenko GW. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(12):2081–2092. doi: 10.1080/19440049.2013.840805
  34. Wöhrlin F, Fry H, Lahrssen-Wiederholt M, Preib-Weigert A. Occurrence of fatty acid esters of 3-MCPD, 2-MCPD and glycidol in infant formula. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(11):1810–1822. doi: 10.1080/19440049.2015.1071497
  35. Matthäus B, Pudel F, Fehling P, et al. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur J lipid Sci Technol. 2011;113(3):380–386. doi: 10.1002/ejlt.201000300
  36. Inagaki R, Hirai C, Shimamura Y, Masuda S. Formation of glycidol fatty acid esters in meat samples cooked by various methods. J Food Process Technol. 2016;7:1–6. doi: 10.4172/2157-7110.1000557
  37. Swern D, Wieder R, McDonough M, et al. Investigation of fatty acids and derivatives for carcinogenic activity. Cancer Res. 1970;30(4):1037–1046.
  38. Van Duuren BL, Katz C, Shimkin MB, et al. Replication of low-level carcinogenic activity bioassays. Cancer Res. 1972;32(4):880–881.
  39. Ikeda N, Fujii K, Sarada M, et al. Genotoxicity studies of glycidol fatty acid ester (glycidol linoleate) and glycidol. Food Chem Toxicol. 2012;50(11):3927–3933. doi: 10.1016/j.fct.2012.08.022
  40. Glycidol. International agency for research on cancer (IARC). In: Monographs on the evaluation of carcinogenic risks to humans [Internet]. Lyon, France. 2000. Vol. 77. P. 469–486 [cited 2024 Feb 21]. Available from: http://monographs.iarc.fr/ENG/Monographs/vol77/mono77-19.pdf
  41. Honda H, Fujii K, Yamaguchi T, et al. Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts. Food Chem Toxicol. 2012;50(11):4163–4168. doi: 10.1016/j.fct.2012.07.058
  42. Honda H, Kawamoto T, Doi Y, et al. Alpha-linolenic acid-enriched diacylglycerol oil does not promote tumor development in tongue and gastrointestinal tract tissues in a medium-term multi-organ carcinogenesis bioassay using male F344 rat. Food Chem Toxicol. 2017;106(Pt A):185–192. doi: 10.1016/j.fct.2017.04.040
  43. Bushita H, Ito Y, Saito T, et al. A 90-day repeated-dose toxicity study of dietary alpha linolenic acid-enriched diacylglycerol oil in rats. Regul Toxicol Pharmacol. 2018;97:33–47. doi: 10.1016/j.yrtph.2018.05.017
  44. https://eur-lex.europa.eu/ [Internet]. Commission regulation (EU) 2018/290 amending Regulation (EC) No 1881/2006 as regards maximum levels of glycidyl fatty acid esters in vegetable oils and fats, infant formula, follow-on formula and foods for special medical purposes intended for infants and young children [cited 2024 Feb 21]. Available from: http://data.europa.eu/eli/reg/2018/290/oj
  45. Makarenko MA, Malinkin AD, Bessonov VV, Bokov DO. Alkaline transesterification CG-MS/MS method of monochlorpropanediol and glycidyl esters’ determination in some edible fats, oils and fat blends on Russian market. Problems of Nutrition. 2020;89(6):113–112. EDN: BEEUML doi: 10.24411/0042-8833-2020-10084
  46. Makarenko MA, Malinkin AD, Bokov DO, Bessonov VV. Monochloropropanediols, glycidol and their esters in children’s nutrition. Pediatric Nutrition. 2019;17(1):38–48. EDN: FLJAHJ doi: 10.20953/1727-5784-2019-1-38-48

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##