DECREASED REDOX-POTENTIAL AND HYPERPRODUCTION OF SUPEROXIDE ANION IN BLOOD PREDICTS CARDIAC ARRHYTHMIAS AFTER DIRECT SURGICAL MYOCARDIAL REVASCULARIZATION


Cite item

Full Text

Abstract

The aim of investigation was the evaluation of prognostic value of redox-potential decreasing and hyperproduction of superoxide anion in plasma with or without of total pool of pyridine nucleotides decreasing in the in-hospital complications after direct surgical myocardial revascularization. 303 patients (248 male and 48 female), mean age 58,6±6,8 years with diagnosis of ischemic heart disease and sinus rhythm without marked left ventricular dysfunction which undergoing coronary bypass graft surgery were included in the multicentral prospective study. European System for Cardiac Operative Risk Evaluation (EuroScore) and the incidence rates of post-procedural ischemic stroke CHADS2 and CHA2DS2-VASc score were calculated. Total pyridine nucleotide pool, redox-potential, hyperproduction of superoxide anion and activity of NADPH-oxidase in blood plasma were determinate before and one year after cardiac surgery. For statistical analysis the SPSS version 23.0 (SPSS Inc. Chicago, Ill) was used, all variables are expressed as mean±standard deviation (SD). The maximum of appearance of postoperative atrial fibrillation (POAF) developed in 34% patients after 1-2 days from cardiac surgery. In the cohort of patients with POAF complicated with decease of redox-potential NAD/NADH by 23% (р<0,01) in comparison with sinus rhythm maintenance group. In group with POAF the AF after 1 years maintained in 45% cases, and developed in 14,5% cases in group with post-operative sinus rhythm. In according with ROC-analysis the area incidence of POAF-NAD/NADH equal 0,92 (р<0,0001), sensitivity of 83,4% and specificity of 91,4%. Redox-potential NAD/NADH level with considered the concentration of superoxide anion and activity of NADPH oxidase in pre-operative plasma of patients undergoing surgical myocardil revascularization could accurately predict the onset of de novo POAF. Thus, plasma NAD/NADH could consider as a candidate for predictive biomarker of common arrhythmia under cardiac surgery.

About the authors

Sergey A. Kovalev

Voronezh Regional State Clinical Hospital No 1; Voronezh N.N. Burdenko State Medical Academy

Email: sakovalev61@gmail.com
doctor of medical sciences, chief of the Department of cardiosurgery No 2 of Voronezh Regional State Clinical Hospital No 1, Voronezh, Russian Federation; Voronezh N.N. Burdenko State Medical Academy, Voronezh, Russian Federation 394036, Voronezh, Russian Federation

Iu. M Chubirko

Voronezh Regional State Clinical Hospital No 1; Voronezh N.N. Burdenko State Medical Academy

394066, Voronezh, Russian Federation 394036, Voronezh, Russian Federation

V. A Verikovsky

Voronezh Regional State Clinical Hospital No 1

394066, Voronezh, Russian Federation 394066, Воронеж

V. E Malikov

A.N. Bakulev National Centre of Cardiovascular Surgery Ministry of Health of Russian Federation

121552, Moscow, Russian Federation

M. A Arzumanyan

A.N. Bakulev National Centre of Cardiovascular Surgery Ministry of Health of Russian Federation

121552, Moscow, Russian Federation

G. V Sukoyan

Scientific-Research Company «EGV-Pharma”

109382, Moscow, Russian Federation

References

  1. Бокерия Л.А., Шенгелия Л.Д. Механизмы фибрилляции предсердий: от идей и гипотез к эффективному пониманию проблемы. Анналы аритмологии. 2014; 11(1): 5-9. doi:10.15275/ annaritmol.2014.1.1
  2. Ковалев С.А., Чубирко Ю.М., Чубирко И.Е. Современные методы профилактики и лечения тромбоэмболических осложнений при операциях на сердце. Научное обозрение. 2013; 4: 204-9.
  3. Maesen B., Nijs J., Maessen J., Allessie M., Schotten U. Postoperative atrial fibrillation: a maze of mechanisms. Europace. 2012; 14(2): 159-174. doi: 10.1093.
  4. Montaigne D., Marechal X., Lacroix D., Staels B. From cardiac mitochondrial dysfunction to clinical arrhythmias. Int. J. Cardiol. 2015; 184:597-9. doi: 10.1016/j.ijcard.2015.03.012
  5. Montaigne D., Marechal X., Lefebvre P. et al. Mitochondrial dysfunction as an arrhytmogenic substrate. J Am Coll Cardiology. 2013; 62(16):1466-73. doi: 10.1016/j.jacc.2013.03.061.
  6. Simon J.N., Ziberna K., Casadei B. Compomised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc. Res. 2016. 109. 509-518. doi: 10.1093/cvr/ cvw012
  7. Antoniades C., Demosthenous M., Reilly St. et al. Myocardial redox state predicts in hospital clinical outcome after cardiac surgery. J Am Coll Cardiology. 2012; 59(1): 60-70. doi: 10.1016/j.jacc.2011.08.062
  8. Sukoyan G.V., Kavadze I.K. Effect of nadcin on energy supply system and apoptosis in ischemia-reperfusion injury to the myocardium. Bull Exp Biol Med. 2008; 146. 321-4. https://doi.org/10.1007/s10517-008-0268-2
  9. Бокерия Л.А., Маликов В.Е., Арзуманян М.А., Владыцкая О.В., Сукоян Г.В. Взаимосвязь между продукцией активных форм кислорода и состоянием эндотелиальной системы у больных ишемической болезнью сердца со сниженной сократительной функцией. Российский кардиологический журнал. 2006; 4: 13-9. doi: 10.15829/1560-4071-2006-4-13-19.
  10. Карсанов Н.В., Сукоян Г.В., Кавадзе И.К. и др. Эндотелиальная дисфункция, редокс-потенциал системы энергетического обеспечения и синтез альдостерона при хронической сердечной недостаточности с мерцательной аритмией и без нее. Российский кардиологический журнал. 2003; 4: 28-31. doi: http://dx.doi. org/10.15829/1560-4071-2003-4-28-31
  11. Донецкая О.П., Тулупова В.А., Шульдешова Н.В., Федорова М.М. Фармакоррекция редокс-потенциала плазмы и дисфункции эндотелия при сердечной недостаточности, обусловленной ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика. 2012; 11(1): 54-8.
  12. Gongadze N.V., Kezeli T.D., Sukoyan G.V. et al. Deterioration in Hemodynamics Reaction, Baroreflex Sensitivity, Sympathetic Nerve Activity and Redox State of Thoracic Aorta in the Experimental Model of Nitrate Tolerance and Its Pharmacological Correction. Pharmacology & Pharmacy. 2016; 7: 81-8. doi: 10.4236/pp.2016.71011
  13. Sukoyan G.V., Golovach S.V., Dolidze N.M. et al. Hypertrophic and Inflammatory Markers in Isoproterenol-Induced Cardiac Hypertrophy and its Pharmacological Correction. Cardiovascular Pharmacol. 2017; 6: 225-30. doi: 10.4172/2329-6607.1000225
  14. Pillai V.B., Sundaresan N.R., Kim G. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010. 285(5). 3133-44. doi: 10.1074/jbc.M109.077271
  15. Shah A.M., Lewis M.J., Brutsaert D.L. Cardiac endothelial myocardial signaling: its role in cardiac growth, contractile performance and rhythmicity. Physiol. Rev. 2003; 83(1): 59-115. doi.org/10.1152/ physrev.00017.2002
  16. Ковалев С.А., Маликов В.Е., Мерзляков В.Ю. др. Эффективность фармакотерапии в нормализации уровня мозгового натрийуретического пептида, активности ренин-ангиотензин-аль-достероновой системы после хирургической реваскуляризации миокарда у больных с постинфарктным кардиосклероз. Профилактическая медицина. 2016; 15(6): 39-45. http://dx.doi. org/10.15829/1728-8800-2016-6-39-45.

Copyright (c) 2019 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies