New targets and nanotheranostics in rheumatoid arthritis therapy: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Rheumatoid arthritis is a severe chronic disease affecting the joints. It is associated with autoimmune imbalance and synovial inflammation. Despite the use of biological agents, a significant proportion of patients remain refractory to standard therapy. Consequently, the development of monoclonal antibodies against novel targets and the application of nanotheranostics to improve therapeutic efficacy and selectivity are of particular interest.

This work aimed to critically review promising future therapeutic targets for monoclonal antibody–based treatments—interferon gamma, granulocyte–macrophage colony-stimulating factor, interleukin-7 receptor alpha, bile salt–stimulated lipase, and programmed cell death receptor-1—and to assess nanotheranostic approaches as a means to improve the treatment of rheumatoid arthritis.

Novel monoclonal antibodies against inflammatory effectors, including emapalumab, otilimab, OSE-127, SOL-116, and peresolimab, may reduce rheumatoid arthritis progression and improve clinical outcomes. However, the nonspecific action of monoclonal antibodies toward autoreactive cells can cause severe adverse effects, necessitating more advanced approaches such as nanotheranostics. Current trends in the treatment of rheumatoid arthritis show increasing use of nanomaterials, particularly liposomes, delivered via monoclonal antibodies. The efficacy of such combinations may be improved by drugs encapsulated within liposomes, such as small noncoding RNAs capable of suppressing specific genes responsible for the development and persistence of rheumatoid arthritis. Targeted localization and internalization of liposomal contents can be activated by physical factors, including infrared radiation and ultrasound, or achieved through targeting receptors overexpressed on autoreactive cells that are capable of internalization into the cellular compartment.

The integration of monoclonal antibodies with nanomaterials as drug carriers represents a promising direction in the treatment of rheumatoid arthritis, providing greater selectivity, safety, and potential for personalized treatment. Further development of these strategies may significantly improve outcomes and quality of life in patients resistant to standard therapies.

About the authors

Alexander A. Sukhov

The First Sechenov Moscow State Medical University

Email: a.suhov2003@yandex.ru
ORCID iD: 0009-0003-7450-9213
Russian Federation, Moscow

Vladimir N. Chubarev

The First Sechenov Moscow State Medical University

Author for correspondence.
Email: chubarev_v_n@staff.sechenov.ru
ORCID iD: 0000-0002-7047-1436
SPIN-code: 6320-7369

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol. 2007;3(5):262–272. doi: 10.1038/ncprheum0481
  2. Derksen VFAM, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39(4):437–446. doi: 10.1007/s00281-017-0627-z EDN: TOWNPA
  3. Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021;10(11):2857. doi: 10.3390/cells10112857 EDN: VCIMCY
  4. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119 EDN: KTMKPP
  5. De Benedetti F, Grom AA, Brogan PA, et al. Efficacy and safety of emapalumab in macrophage activation syndrome. Ann Rheum Dis. 2023;82(6):857–865. doi: 10.1136/ard-2022-223739 EDN: HDKEFP
  6. Bracaglia C, de Graaf K, Pires Marafon D, et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2017;76(1):166–172. doi: 10.1136/annrheumdis-2015-209020 EDN: QCYBEH
  7. Fleischmann RM, van der Heijde D, Strand V, et al. Anti-GM-CSF otilimab versus tofacitinib or placebo in patients with active rheumatoid arthritis and an inadequate response to conventional or biologic DMARDs: two phase 3 randomised trials (contRAst 1 and contRAst 2). Ann Rheum Dis. 2023;82(12):1516–1526. doi: 10.1136/ard-2023-224482 EDN: NYGWVK
  8. Fuentelsaz-Romero S, Cuervo A, Estrada-Capetillo L, et al. GM-CSF expression and macrophage polarization in joints of undifferentiated arthritis patients evolving to rheumatoid arthritis or psoriatic arthritis. Front Immunol. 2021;11:613975. doi: 10.3389/fimmu.2020.613975 EDN: LTSYAC
  9. Ponchel F, Churchman S, El-Jawhari JJ, et al. Interleukin-7: a potential factor supporting B-cell maturation in the rheumatoid arthritis synovium. Clin Exp Rheumatol. 2021;39(2):253–262. doi: 10.55563/clinexprheumatol/j6t7cj EDN: EXEYWW
  10. Zeng Z, Mao H, Lei Q, He Y. IL-7 in autoimmune diseases: mechanisms and therapeutic potential. Front Immunol. 2025;16:1545760. doi: 10.3389/fimmu.2025.1545760
  11. Sugamura K, Asao H, Kondo M, et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol. 1996;14:179–205. doi: 10.1146/annurev.immunol.14.1.179
  12. Poirier N, Baccelli I, Belarif L, et al. First-in-human study in healthy subjects with the noncytotoxic monoclonal antibody OSE-127, a strict antagonist of IL-7Rα. J Immunol. 2023;210(6):753–763. doi: 10.4049/jimmunol.2200635 EDN: DBCPPB
  13. Lindquist S, Wang Y, Andersson EL, et al. Effects of bile salt-stimulated lipase on blood cells and associations with disease activity in human inflammatory joint disorders. PLoS One. 2023;18(8):e0289980. doi: 10.1371/journal.pone.0289980 EDN: XYNKSW
  14. Franck-Larsson K, Lindquist S, Wennerholm A, et al. A first-in-human clinical trial evaluating the safety and pharmacokinetics of SOL-116, a novel humanized monoclonal antibody targeting bile salt-stimulated lipase for the treatment of RA [abstract]. Arthritis Rheumatol. 2024;76(Suppl 9).
  15. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–245. doi: 10.1038/ni1443
  16. Cappelli LC, Gutierrez AK, Bingham CO 3rd, Shah AA. Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: a systematic review of the literature. Arthritis Care Res (Hoboken). 2017;69(11):1751–1763. doi: 10.1002/acr.23177
  17. Raptopoulou AP, Bertsias G, Makrygiannakis D, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62(7):1870–1880. doi: 10.1002/art.27500
  18. Li S, Liao W, Chen M, et al. Expression of programmed death-1 (PD-1) on CD4+ and CD8+ T cells in rheumatoid arthritis. Inflammation. 2014;37(1):116–121. doi: 10.1007/s10753-013-9718-8 EDN: NRJJAZ
  19. Rao DA, Gurish MF, Marshall JL, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110–114. doi: 10.1038/nature20810
  20. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–151. doi: 10.1016/s1074-7613(00)80089-8
  21. Zhang S, Wang L, Li M, et al. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc. 2021;120(1 Pt 1):48–59. doi: 10.1016/j.jfma.2020.04.004
  22. Cappelli LC, Gutierrez AK, Baer AN, et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis. 2017;76(1):43–50. doi: 10.1136/annrheumdis-2016-209595 EDN: YWCNCV
  23. Calabrese C, Kirchner E, Kontzias A, et al. Rheumatic immune-related adverse events of checkpoint therapy for cancer: case series of a new nosological entity. RMD Open. 2017;3(1):e000412. doi: 10.1136/rmdopen-2016-000412
  24. Belkhir R, Burel SL, Dunogeant L, et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann Rheum Dis. 2017;76(10):1747–1750. doi: 10.1136/annrheumdis-2017-211216
  25. Tuttle J, Drescher E, Simón-Campos JA, et al. A phase 2 Trial of Peresolimab for adults with rheumatoid arthritis. N Engl J Med. 2023;388(20):1853–1862. doi: 10.1056/NEJMoa2209856 EDN: KZIEGN
  26. Tanner MR, Hu X, Huq R, et al. KCa1.1 inhibition attenuates fibroblast-like synoviocyte invasiveness and ameliorates disease in rat models of rheumatoid arthritis. Arthritis Rheumatol. 2015;67(1):96–106. doi: 10.1002/art.38883
  27. Ong ST, Bajaj S, Tanner MR, et al. Modulation of lymphocyte potassium channel KV1.3 by membrane-penetrating, joint-targeting immunomodulatory plant defensin. ACS Pharmacol Transl Sci. 2020;3(4):720–736. doi: 10.1021/acsptsci.0c00035 EDN: LEXYAO
  28. More NE, Mandlik R, Zine S, et al. Exploring the therapeutic opportunities of potassium channels for the treatment of rheumatoid arthritis. Front Pharmacol. 2024;15:1286069. doi: 10.3389/fphar.2024.1286069 EDN: ANZCNM
  29. Kwon OC, Park MC, Kim YG. Interleukin-32 as a biomarker in rheumatic diseases: A narrative review. Front Immunol. 2023;14:1140373. doi: 10.3389/fimmu.2023.1140373 EDN: PVKVII
  30. Kwon OC, Kim S, Hong S, et al. Role of IL-32 gamma on bone metabolism in autoimmune arthritis. Immune Netw. 2018;18(3):e20. doi: 10.4110/in.2018.18.e20
  31. Madav Y, Barve K, Prabhakar B. Current trends in theranostics for rheumatoid arthritis. Eur J Pharm Sci. 2020;145:105240. doi: 10.1016/j.ejps.2020.105240 EDN: INKPJY
  32. Qamar N, Arif A, Bhatti A, John P. Nanomedicine: an emerging era of theranostics and therapeutics for rheumatoid arthritis. Rheumatology (Oxford). 2019;58(10):1715–1721. doi: 10.1093/rheumatology/kez286
  33. Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target. 2018;26(10):845–857. doi: 10.1080/1061186X.2018.1433680 EDN: ETDTFN
  34. Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup2):502–514. doi: 10.1080/21691401.2018.1460373
  35. Koushki K, Keshavarz Shahbaz S, Keshavarz M, et al. Gold nanoparticles: multifaceted roles in the management of autoimmune disorders. Biomolecules. 2021;11(9):1289. doi: 10.3390/biom11091289 EDN: HJXOVV
  36. Zeng L, Geng H, Gu W, et al. Au nanoparticles attenuate RANKL-induced osteoclastogenesis by suppressing pre-osteoclast fusion. J Nanosci Nanotechnol. 2019;19(4):2166–2173. doi: 10.1166/jnn.2019.15764
  37. Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8(5):4790–4798. doi: 10.1021/nn500685h
  38. Zhao P, Wang Y, Wu A, et al. Roles of albumin-binding proteins in cancer progression and biomimetic targeted drug delivery. Chembiochem. 2018;19(17):1796–1805. doi: 10.1002/cbic.201800201
  39. Zhong J, Zhang Q, Zhang Z, et al. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Research. 2022;15(1):153–161. doi: 10.1007/s12274-021-3449-1
  40. Zheng X, Yu X, Wang C, et al. Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy. Drug Deliv. 2022;29(1):1025–1037. doi: 10.1080/10717544.2022.2057616 EDN: JIOZOR
  41. Liu M, Huang Y, Hu L, et al. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol. 2012;12:68. doi: 10.1186/1472-6750-12-68 EDN: ICMAUB
  42. Martinho N, Florindo H, Silva L, et al. Molecular modeling to study dendrimers for biomedical applications. Molecules. 2014;19(12):20424–20467. doi: 10.3390/molecules191220424 EDN: USQJVF
  43. Wang Q, Sun X. Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomater Sci. 2017;5(8):1407–1420. doi: 10.1039/c7bm00254h EDN: YGEPCI
  44. Oliveira IM, Gonçalves C, Oliveira EP, et al. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Mater Sci Eng C Mater Biol Appl. 2021;121:111845. doi: 10.1016/j.msec.2020.111845 EDN: YSHHQU
  45. Hajebi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1–18. doi: 10.1016/j.actbio.2019.05.018 EDN: WZDFWP
  46. Preman NK, Barki RR, Vijayan A, et al. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm. 2020;157:121–153. doi: 10.1016/j.ejpb.2020.10.009 EDN: INJYAN
  47. Mohammad Faizal NDF, Ramli NA, Mat Rani NNI, et al. Leveraging immunoliposomes as nanocarriers against SARS-CoV-2 and its emerging variants. Asian J Pharm Sci. 2023;18(6):100855. doi: 10.1016/j.ajps.2023.100855 EDN: JRZMZF
  48. Hama S, Sakai M, Itakura S, et al. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys Rep. 2021;27:101067. doi: 10.1016/j.bbrep.2021.101067 EDN: OQGGYL
  49. Charbe NB, Amnerkar ND, Ramesh B, et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B. 2020;10(11):2075–2109. doi: 10.1016/j.apsb.2020.10.005 EDN: YXQCNE
  50. Gargano G, Oliva F, Oliviero A, Maffulli N. Small interfering RNAs in the management of human rheumatoid arthritis. Br Med Bull. 2022;142(1):34–43. doi: 10.1093/bmb/ldac012 EDN: QHXVMX
  51. Guzmán-Guzmán IP, Ramírez-Vélez CI, Falfán-Valencia R, et al. PADI2 polymorphisms are significantly associated with rheumatoid arthritis, autoantibodies serologic status and joint damage in women from Southern Mexico. Front Immunol. 2021;12:718246. doi: 10.3389/fimmu.2021.718246 EDN: OXLQAM
  52. Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020;16(6):301–315. doi: 10.1038/s41584-020-0409-1 EDN: RTRDTL
  53. Damgaard D, Senolt L, Nielsen CH. Increased levels of peptidylarginine deiminase 2 in synovial fluid from anti-CCP-positive rheumatoid arthritis patients: Association with disease activity and inflammatory markers. Rheumatology (Oxford). 2016;55(5):918–927. doi: 10.1093/rheumatology/kev440
  54. Damgaard D, Senolt L, Nielsen MF, et al. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Res Ther. 2014;16(6):498. doi: 10.1186/s13075-014-0498-9 EDN: OQCHLR
  55. Foulquier C, Sebbag M, Clavel C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541–3553. doi: 10.1002/art.22983
  56. Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–1862. doi: 10.1084/jem.20100239
  57. Hocking AM, Buckner JH. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front Immunol. 2022;13:972121. doi: 10.3389/fimmu.2022.972121 EDN: VGFPMU
  58. Zhao G, Liu A, Zhang Y, et al. Nanoparticle-delivered siRNA targeting Bruton's tyrosine kinase for rheumatoid arthritis therapy. Biomater Sci. 2019;7(11):4698–4707. doi: 10.1039/c9bm01025d
  59. Lohchania B, Christopher AC, Arjunan P, et al. Diosgenin enhances liposome-enabled nucleic acid delivery and CRISPR/Cas9-mediated gene editing by modulating endocytic pathways. Front Bioeng Biotechnol. 2023;10:1031049. doi: 10.3389/fbioe.2022.1031049 EDN: SCZTXN
  60. Sukocheva OA, Liu J, Neganova ME, et al. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol. 2022;86(Pt 2):358–375. doi: 10.1016/j.semcancer.2022.05.012 EDN: CPVMDS
  61. Wiraja C, Mathiyazhakan M, Movahedi F, et al. Near-infrared light-sensitive liposomes for enhanced plasmid DNA transfection. Bioeng Transl Med. 2016;1(3):357–364. doi: 10.1002/btm2.10020 EDN: XRQAOD
  62. Li X, Yang C, Tao Y, et al. Near-infrared light-triggered thermosensitive liposomes modified with membrane peptides for the local chemo/photothermal therapy of melanoma. Onco Targets Ther. 2021;14:1317–1329. doi: 10.2147/OTT.S287272 EDN: OJNEUA
  63. Schroeder A, Avnir Y, Weisman S, et al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir. 2007;23(7):4019–4025. doi: 10.1021/la0631668 EDN: LQKTAN
  64. Campbell J, Lowe D, Sleeman MA. Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis. Br J Pharmacol. 2011;162(7):1470–1484. doi: 10.1111/j.1476-5381.2010.01183.x
  65. Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflamm Regen. 2018;38:11. doi: 10.1186/s41232-018-0068-7 EDN: NBOZMU
  66. Thwaites R, Chamberlain G, Sacre S. Emerging role of endosomal Toll-like receptors in rheumatoid arthritis. Front Immunol. 2014;5:1. doi: 10.3389/fimmu.2014.00001 EDN: URDVFD
  67. Liu J, Wang X, Wang S, Liu F. Therapeutic potential of non-coding RNAs and TLR signalling pathways in rheumatoid arthritis. Curr Pharm Biotechnol. 2021;22(11):1490–1500. doi: 10.2174/1389201021666201001142829 EDN: IAIWIZ
  68. Arleevskaya MI, Larionova RV, Brooks WH, et al. Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. 2020;58(2):172–181. doi: 10.1007/s12016-019-08742-z EDN: ZYWHMJ
  69. Santos-Sierra S. Targeting Toll-like receptor (TLR) pathways in inflammatory arthritis: two better than one? Biomolecules. 2021;11(9):1291. doi: 10.3390/biom11091291 EDN: UQFZQW
  70. Kim KW, Cho ML, Lee SH, et al. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett. 2007;110(1):54–64. doi: 10.1016/j.imlet.2007.03.004
  71. Clanchy FIL, Borghese F, Bystrom J, et al. TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. J Autoimmun. 2021;118:102597. doi: 10.1016/j.jaut.2021.102597 EDN: TFFSGQ
  72. Hu F, Li Y, Zheng L, et al. Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and th17 cell responses in rheumatoid arthritis. PLoS One. 2014;9(6):e100266. doi: 10.1371/journal.pone.0100266
  73. Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 2004;50(5):1457–1467. doi: 10.1002/art.20219
  74. Murakami Y, Fukui R, Tanaka R, et al. Anti-TLR7 antibody protects against lupus nephritis in NZBWF1 mice by targeting B cells and patrolling monocytes. Front Immunol. 2021;12:777197. doi: 10.3389/fimmu.2021.777197 EDN: CNKLTA

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).