Новые мишени и нанотераностика в терапии ревматоидного артрита: литературный обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ревматоидный артрит (РА) — тяжёлое хроническое заболевание, поражающее суставы. Оно связано с аутоиммунным дисбалансом и воспалением в синовии. Несмотря на использование биологических препаратов, значительная часть пациентов остаётся рефрактерной к стандартной терапии. В связи с этим особый интерес представляет разработка моноклональных антител с принципиально новыми мишенями, а также использование потенциала нанотераностики для повышения эффективности и селективности терапии.

В обзоре критически рассмотрены перспективные мишени для будущего лечения на основе моноклональных антител: интерферон гамма; гранулоцитарно-макрофагальный колониестимулирующий фактор; интерлейкин 7 рецептора альфа; липаза, стимулированная солями желчных кислот; рецептор программируемой клеточной смерти 1 — и оценить нанотераностический подход в качестве метода улучшения лечения РА.

Новые моноклональные антитела против эффекторов воспаления, включая эмапалумаб, отилимаб, OSE-127, SOL-116 и пересолимаб (peresolimab), могут уменьшить прогрессирование РА и увеличить шансы на благоприятный исход. Однако неспецифичность моноклональных антител по отношению к аутореактивным клеткам может привести к серьёзным побочным эффектам, и данное обстоятельство требует рассмотрения более совершенных подходов, таких как нанотераностика. Современные тенденции в терапии РА указывают на растущую частоту использования наноматериалов, в частности липосом, доставляемых с помощью моноклональных антител. Повышение эффективности такой комбинации могут обеспечить инкапсулированные в липосому препараты, такие как малые некодирующие молекулы рибонуклеиновой кислоты, которые способны подавлять специфические гены, ответственные за развитие и персистенцию РА. Целевая локализация и интернализация содержимого липосом может быть активирована физическими факторами, включая инфракрасное излучение и ультразвук, или же реализована нацеливанием на клеточные рецепторы, которые сверхэкспрессированы на аутореактивных клетках и способны к интернализации в клеточный компартмент.

Интеграция моноклональных антител с наноматериалами в качестве носителей лекарственных препаратов представляет собой перспективное направление в терапии РА, обеспечивая более высокую селективность, безопасность и потенциал для персонализированного подхода. Дальнейшее развитие данных стратегий способно существенно улучшить прогноз и качество жизни пациентов, устойчивых к традиционным методам лечения.

Об авторах

Александр Александрович Сухов

Первый Московский государственный медицинский университет имени И.М. Сеченова

Email: a.suhov2003@yandex.ru
ORCID iD: 0009-0003-7450-9213
Россия, Москва

Владимир Николаевич Чубарев

Первый Московский государственный медицинский университет имени И.М. Сеченова

Автор, ответственный за переписку.
Email: chubarev_v_n@staff.sechenov.ru
ORCID iD: 0000-0002-7047-1436
SPIN-код: 6320-7369

д-р мед. наук, профессор

Россия, Москва

Список литературы

  1. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol. 2007;3(5):262–272. doi: 10.1038/ncprheum0481
  2. Derksen VFAM, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39(4):437–446. doi: 10.1007/s00281-017-0627-z EDN: TOWNPA
  3. Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021;10(11):2857. doi: 10.3390/cells10112857 EDN: VCIMCY
  4. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119 EDN: KTMKPP
  5. De Benedetti F, Grom AA, Brogan PA, et al. Efficacy and safety of emapalumab in macrophage activation syndrome. Ann Rheum Dis. 2023;82(6):857–865. doi: 10.1136/ard-2022-223739 EDN: HDKEFP
  6. Bracaglia C, de Graaf K, Pires Marafon D, et al. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2017;76(1):166–172. doi: 10.1136/annrheumdis-2015-209020 EDN: QCYBEH
  7. Fleischmann RM, van der Heijde D, Strand V, et al. Anti-GM-CSF otilimab versus tofacitinib or placebo in patients with active rheumatoid arthritis and an inadequate response to conventional or biologic DMARDs: two phase 3 randomised trials (contRAst 1 and contRAst 2). Ann Rheum Dis. 2023;82(12):1516–1526. doi: 10.1136/ard-2023-224482 EDN: NYGWVK
  8. Fuentelsaz-Romero S, Cuervo A, Estrada-Capetillo L, et al. GM-CSF expression and macrophage polarization in joints of undifferentiated arthritis patients evolving to rheumatoid arthritis or psoriatic arthritis. Front Immunol. 2021;11:613975. doi: 10.3389/fimmu.2020.613975 EDN: LTSYAC
  9. Ponchel F, Churchman S, El-Jawhari JJ, et al. Interleukin-7: a potential factor supporting B-cell maturation in the rheumatoid arthritis synovium. Clin Exp Rheumatol. 2021;39(2):253–262. doi: 10.55563/clinexprheumatol/j6t7cj EDN: EXEYWW
  10. Zeng Z, Mao H, Lei Q, He Y. IL-7 in autoimmune diseases: mechanisms and therapeutic potential. Front Immunol. 2025;16:1545760. doi: 10.3389/fimmu.2025.1545760
  11. Sugamura K, Asao H, Kondo M, et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol. 1996;14:179–205. doi: 10.1146/annurev.immunol.14.1.179
  12. Poirier N, Baccelli I, Belarif L, et al. First-in-human study in healthy subjects with the noncytotoxic monoclonal antibody OSE-127, a strict antagonist of IL-7Rα. J Immunol. 2023;210(6):753–763. doi: 10.4049/jimmunol.2200635 EDN: DBCPPB
  13. Lindquist S, Wang Y, Andersson EL, et al. Effects of bile salt-stimulated lipase on blood cells and associations with disease activity in human inflammatory joint disorders. PLoS One. 2023;18(8):e0289980. doi: 10.1371/journal.pone.0289980 EDN: XYNKSW
  14. Franck-Larsson K, Lindquist S, Wennerholm A, et al. A first-in-human clinical trial evaluating the safety and pharmacokinetics of SOL-116, a novel humanized monoclonal antibody targeting bile salt-stimulated lipase for the treatment of RA [abstract]. Arthritis Rheumatol. 2024;76(Suppl 9).
  15. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–245. doi: 10.1038/ni1443
  16. Cappelli LC, Gutierrez AK, Bingham CO 3rd, Shah AA. Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: a systematic review of the literature. Arthritis Care Res (Hoboken). 2017;69(11):1751–1763. doi: 10.1002/acr.23177
  17. Raptopoulou AP, Bertsias G, Makrygiannakis D, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62(7):1870–1880. doi: 10.1002/art.27500
  18. Li S, Liao W, Chen M, et al. Expression of programmed death-1 (PD-1) on CD4+ and CD8+ T cells in rheumatoid arthritis. Inflammation. 2014;37(1):116–121. doi: 10.1007/s10753-013-9718-8 EDN: NRJJAZ
  19. Rao DA, Gurish MF, Marshall JL, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110–114. doi: 10.1038/nature20810
  20. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–151. doi: 10.1016/s1074-7613(00)80089-8
  21. Zhang S, Wang L, Li M, et al. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc. 2021;120(1 Pt 1):48–59. doi: 10.1016/j.jfma.2020.04.004
  22. Cappelli LC, Gutierrez AK, Baer AN, et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis. 2017;76(1):43–50. doi: 10.1136/annrheumdis-2016-209595 EDN: YWCNCV
  23. Calabrese C, Kirchner E, Kontzias A, et al. Rheumatic immune-related adverse events of checkpoint therapy for cancer: case series of a new nosological entity. RMD Open. 2017;3(1):e000412. doi: 10.1136/rmdopen-2016-000412
  24. Belkhir R, Burel SL, Dunogeant L, et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann Rheum Dis. 2017;76(10):1747–1750. doi: 10.1136/annrheumdis-2017-211216
  25. Tuttle J, Drescher E, Simón-Campos JA, et al. A phase 2 Trial of Peresolimab for adults with rheumatoid arthritis. N Engl J Med. 2023;388(20):1853–1862. doi: 10.1056/NEJMoa2209856 EDN: KZIEGN
  26. Tanner MR, Hu X, Huq R, et al. KCa1.1 inhibition attenuates fibroblast-like synoviocyte invasiveness and ameliorates disease in rat models of rheumatoid arthritis. Arthritis Rheumatol. 2015;67(1):96–106. doi: 10.1002/art.38883
  27. Ong ST, Bajaj S, Tanner MR, et al. Modulation of lymphocyte potassium channel KV1.3 by membrane-penetrating, joint-targeting immunomodulatory plant defensin. ACS Pharmacol Transl Sci. 2020;3(4):720–736. doi: 10.1021/acsptsci.0c00035 EDN: LEXYAO
  28. More NE, Mandlik R, Zine S, et al. Exploring the therapeutic opportunities of potassium channels for the treatment of rheumatoid arthritis. Front Pharmacol. 2024;15:1286069. doi: 10.3389/fphar.2024.1286069 EDN: ANZCNM
  29. Kwon OC, Park MC, Kim YG. Interleukin-32 as a biomarker in rheumatic diseases: A narrative review. Front Immunol. 2023;14:1140373. doi: 10.3389/fimmu.2023.1140373 EDN: PVKVII
  30. Kwon OC, Kim S, Hong S, et al. Role of IL-32 gamma on bone metabolism in autoimmune arthritis. Immune Netw. 2018;18(3):e20. doi: 10.4110/in.2018.18.e20
  31. Madav Y, Barve K, Prabhakar B. Current trends in theranostics for rheumatoid arthritis. Eur J Pharm Sci. 2020;145:105240. doi: 10.1016/j.ejps.2020.105240 EDN: INKPJY
  32. Qamar N, Arif A, Bhatti A, John P. Nanomedicine: an emerging era of theranostics and therapeutics for rheumatoid arthritis. Rheumatology (Oxford). 2019;58(10):1715–1721. doi: 10.1093/rheumatology/kez286
  33. Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target. 2018;26(10):845–857. doi: 10.1080/1061186X.2018.1433680 EDN: ETDTFN
  34. Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup2):502–514. doi: 10.1080/21691401.2018.1460373
  35. Koushki K, Keshavarz Shahbaz S, Keshavarz M, et al. Gold nanoparticles: multifaceted roles in the management of autoimmune disorders. Biomolecules. 2021;11(9):1289. doi: 10.3390/biom11091289 EDN: HJXOVV
  36. Zeng L, Geng H, Gu W, et al. Au nanoparticles attenuate RANKL-induced osteoclastogenesis by suppressing pre-osteoclast fusion. J Nanosci Nanotechnol. 2019;19(4):2166–2173. doi: 10.1166/jnn.2019.15764
  37. Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8(5):4790–4798. doi: 10.1021/nn500685h
  38. Zhao P, Wang Y, Wu A, et al. Roles of albumin-binding proteins in cancer progression and biomimetic targeted drug delivery. Chembiochem. 2018;19(17):1796–1805. doi: 10.1002/cbic.201800201
  39. Zhong J, Zhang Q, Zhang Z, et al. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Research. 2022;15(1):153–161. doi: 10.1007/s12274-021-3449-1
  40. Zheng X, Yu X, Wang C, et al. Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy. Drug Deliv. 2022;29(1):1025–1037. doi: 10.1080/10717544.2022.2057616 EDN: JIOZOR
  41. Liu M, Huang Y, Hu L, et al. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol. 2012;12:68. doi: 10.1186/1472-6750-12-68 EDN: ICMAUB
  42. Martinho N, Florindo H, Silva L, et al. Molecular modeling to study dendrimers for biomedical applications. Molecules. 2014;19(12):20424–20467. doi: 10.3390/molecules191220424 EDN: USQJVF
  43. Wang Q, Sun X. Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomater Sci. 2017;5(8):1407–1420. doi: 10.1039/c7bm00254h EDN: YGEPCI
  44. Oliveira IM, Gonçalves C, Oliveira EP, et al. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Mater Sci Eng C Mater Biol Appl. 2021;121:111845. doi: 10.1016/j.msec.2020.111845 EDN: YSHHQU
  45. Hajebi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1–18. doi: 10.1016/j.actbio.2019.05.018 EDN: WZDFWP
  46. Preman NK, Barki RR, Vijayan A, et al. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm. 2020;157:121–153. doi: 10.1016/j.ejpb.2020.10.009 EDN: INJYAN
  47. Mohammad Faizal NDF, Ramli NA, Mat Rani NNI, et al. Leveraging immunoliposomes as nanocarriers against SARS-CoV-2 and its emerging variants. Asian J Pharm Sci. 2023;18(6):100855. doi: 10.1016/j.ajps.2023.100855 EDN: JRZMZF
  48. Hama S, Sakai M, Itakura S, et al. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys Rep. 2021;27:101067. doi: 10.1016/j.bbrep.2021.101067 EDN: OQGGYL
  49. Charbe NB, Amnerkar ND, Ramesh B, et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B. 2020;10(11):2075–2109. doi: 10.1016/j.apsb.2020.10.005 EDN: YXQCNE
  50. Gargano G, Oliva F, Oliviero A, Maffulli N. Small interfering RNAs in the management of human rheumatoid arthritis. Br Med Bull. 2022;142(1):34–43. doi: 10.1093/bmb/ldac012 EDN: QHXVMX
  51. Guzmán-Guzmán IP, Ramírez-Vélez CI, Falfán-Valencia R, et al. PADI2 polymorphisms are significantly associated with rheumatoid arthritis, autoantibodies serologic status and joint damage in women from Southern Mexico. Front Immunol. 2021;12:718246. doi: 10.3389/fimmu.2021.718246 EDN: OXLQAM
  52. Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020;16(6):301–315. doi: 10.1038/s41584-020-0409-1 EDN: RTRDTL
  53. Damgaard D, Senolt L, Nielsen CH. Increased levels of peptidylarginine deiminase 2 in synovial fluid from anti-CCP-positive rheumatoid arthritis patients: Association with disease activity and inflammatory markers. Rheumatology (Oxford). 2016;55(5):918–927. doi: 10.1093/rheumatology/kev440
  54. Damgaard D, Senolt L, Nielsen MF, et al. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Res Ther. 2014;16(6):498. doi: 10.1186/s13075-014-0498-9 EDN: OQCHLR
  55. Foulquier C, Sebbag M, Clavel C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541–3553. doi: 10.1002/art.22983
  56. Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–1862. doi: 10.1084/jem.20100239
  57. Hocking AM, Buckner JH. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front Immunol. 2022;13:972121. doi: 10.3389/fimmu.2022.972121 EDN: VGFPMU
  58. Zhao G, Liu A, Zhang Y, et al. Nanoparticle-delivered siRNA targeting Bruton's tyrosine kinase for rheumatoid arthritis therapy. Biomater Sci. 2019;7(11):4698–4707. doi: 10.1039/c9bm01025d
  59. Lohchania B, Christopher AC, Arjunan P, et al. Diosgenin enhances liposome-enabled nucleic acid delivery and CRISPR/Cas9-mediated gene editing by modulating endocytic pathways. Front Bioeng Biotechnol. 2023;10:1031049. doi: 10.3389/fbioe.2022.1031049 EDN: SCZTXN
  60. Sukocheva OA, Liu J, Neganova ME, et al. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol. 2022;86(Pt 2):358–375. doi: 10.1016/j.semcancer.2022.05.012 EDN: CPVMDS
  61. Wiraja C, Mathiyazhakan M, Movahedi F, et al. Near-infrared light-sensitive liposomes for enhanced plasmid DNA transfection. Bioeng Transl Med. 2016;1(3):357–364. doi: 10.1002/btm2.10020 EDN: XRQAOD
  62. Li X, Yang C, Tao Y, et al. Near-infrared light-triggered thermosensitive liposomes modified with membrane peptides for the local chemo/photothermal therapy of melanoma. Onco Targets Ther. 2021;14:1317–1329. doi: 10.2147/OTT.S287272 EDN: OJNEUA
  63. Schroeder A, Avnir Y, Weisman S, et al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir. 2007;23(7):4019–4025. doi: 10.1021/la0631668 EDN: LQKTAN
  64. Campbell J, Lowe D, Sleeman MA. Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis. Br J Pharmacol. 2011;162(7):1470–1484. doi: 10.1111/j.1476-5381.2010.01183.x
  65. Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflamm Regen. 2018;38:11. doi: 10.1186/s41232-018-0068-7 EDN: NBOZMU
  66. Thwaites R, Chamberlain G, Sacre S. Emerging role of endosomal Toll-like receptors in rheumatoid arthritis. Front Immunol. 2014;5:1. doi: 10.3389/fimmu.2014.00001 EDN: URDVFD
  67. Liu J, Wang X, Wang S, Liu F. Therapeutic potential of non-coding RNAs and TLR signalling pathways in rheumatoid arthritis. Curr Pharm Biotechnol. 2021;22(11):1490–1500. doi: 10.2174/1389201021666201001142829 EDN: IAIWIZ
  68. Arleevskaya MI, Larionova RV, Brooks WH, et al. Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. 2020;58(2):172–181. doi: 10.1007/s12016-019-08742-z EDN: ZYWHMJ
  69. Santos-Sierra S. Targeting Toll-like receptor (TLR) pathways in inflammatory arthritis: two better than one? Biomolecules. 2021;11(9):1291. doi: 10.3390/biom11091291 EDN: UQFZQW
  70. Kim KW, Cho ML, Lee SH, et al. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett. 2007;110(1):54–64. doi: 10.1016/j.imlet.2007.03.004
  71. Clanchy FIL, Borghese F, Bystrom J, et al. TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. J Autoimmun. 2021;118:102597. doi: 10.1016/j.jaut.2021.102597 EDN: TFFSGQ
  72. Hu F, Li Y, Zheng L, et al. Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and th17 cell responses in rheumatoid arthritis. PLoS One. 2014;9(6):e100266. doi: 10.1371/journal.pone.0100266
  73. Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 2004;50(5):1457–1467. doi: 10.1002/art.20219
  74. Murakami Y, Fukui R, Tanaka R, et al. Anti-TLR7 antibody protects against lupus nephritis in NZBWF1 mice by targeting B cells and patrolling monocytes. Front Immunol. 2021;12:777197. doi: 10.3389/fimmu.2021.777197 EDN: CNKLTA

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).