Klotho protein and atherosclerotic cardiovascular diseases: prolonging the thread of life

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To date, the most widely used biomarkers are natriuretic peptides and cardiac troponins. Many other biomarkers have also been identified, but only a few of them have found application in actual clinical practice. This review focuses on the Klotho protein and its role in cardiovascular diseases.

In 1997, a gene that slows down the aging process was identified. It was named Klotho (Greek, Κλωθώ, “spinning”; Latin, Clotho; English, Klotho) in honor of the goddess of ancient Greek mythology, spinning the thread of life and being the personification of the steady, calm course of fate. Mice with an insertional mutation in the region of the Klotho gene promoter were characterized by premature aging processes. Three families of Klotho are known: α-Klotho, β-Klotho, and γ-Klotho, and the most studied is α-Klotho. The Klotho protein consists of a large extracellular domain and a short C-terminal intracellular region. The extracellular domain consists of two repeat sequences called KL1 and KL2. α-Klotho and β-Klotho contain the KL1 and KL2 domains, respectively, and γ-Klotho contains only the KL1 domain. The Klotho gene in humans is located on chromosome 13q12 and consists of five exons. The Klotho protein is mainly expressed in the distal convoluted tubules of the kidneys and the vascular epithelial plexus of the cerebral ventricles. At lower concentrations, the Klotho gene is also found in other organs and tissues, particularly in the heart.

Many studies have demonstrated the protective role of the Klotho protein in cardiovascular pathology. The pleiotropic properties of this protein are reflected in the diversity and interaction of cardioprotective mechanisms. The regulation of the concentrations of the Klotho protein in the blood and its expression in heart cells with the help of drugs can play a significant role in cellular metabolism and represent a promising target for the treatment of heart and vascular pathologies.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University (Pirogov Medical University)

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), associate professor;

Russian Federation, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Kira V. Voronkova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: kiravoronkova@yandex.ru
ORCID iD: 0000-0003-1111-6378
SPIN-code: 1636-7627

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Elvira Azretalievna Khachirova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: elchik09@mail.ru
ORCID iD: 0000-0003-2523-8907

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Leyla R. Sarakaeva

Almazov National Medical Research Center

Email: sarale723@gmail.com
ORCID iD: 0000-0002-2752-861X

PhD student

Russian Federation, Saint Petersburg

Ramiz K. Valiev

The Loginov Moscow Clinical Scientific Center

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Irina A. Kotikova

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

student

Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

References

  1. Alieva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514 / 2226-6704-2018-8-5-333-345
  2. Alieva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522–526. (In Russ). doi: 10.26442/20751753.2021.6.200606
  3. Alieva AM, Baykova IE, Kislyakov VA. Galectin-3: diagnostic and prognostic value in patients with chronic heart failure. Therapevti cheskii arkhiv. 2019;91(9):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226
  4. Alieva AM, Almazova II, Pinchuk TV. Fractalkin and cardiovascular diseases. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186
  5. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: 10.1038/36285
  6. Timoshchenko OV, Nikitin YuP. Klotho protein and atherosclerosis. Ateroscleroz. 2017;13(4):38–41. (In Russ). doi: 10.15372/ATER20170406
  7. Masuda H, Chikuda H, Suga T, et al. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev. 2005;126(12):1274–1283. doi: 10.1016/j.mad.2005.07.007
  8. Bi X, Yang K, Zhang B, Zhao J. The protective role of Klotho in CKD-associated cardiovascular disease. Kidney Dis. 2020;6(6):395–406. doi: 10.1159/000509369
  9. Matsumura Y, Aizawa H, Shiraki-Iida T, et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626–630. doi: 10.1006/bbrc.1997.8019
  10. Bloch L, Sineshchekova O, Reichenbach D, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–3224. doi: 10.1016/j.febslet.2009.09.009
  11. Veronesi F, Borsari V, Cherubini A, Fini M. Association of Klotho with physical performance and frailty in middle-aged and older adults: a systematic review. Exp Gerontol. 2021;154:111518. doi: 10.1016/j.exger.2021.111518
  12. Tomo S, Birdi A, Yadav D, et al. Klotho: a possible role in the pathophysiology of nephrotic syndrome. EJIFCC. 2022;33(1):3–10.
  13. Van Husen M, Fischer AK, Lehnhardt A, et al. Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int. 2010;78(2):200–206. doi: 10.1038/ ki.2010.107
  14. Andrukhova O, Smorodchenko A, Egerbacher M, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33(3):229–246. doi: 10.1002/embj.201284188
  15. Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513–518. doi: 10.1016/j.bbrc.2010.06.110.
  16. Pedersen L, Pedersen SM, Brasen CL, Rasmussen LM. Soluble serum Klotho levels in healthy subjects. Comparison of two different immunoassays. Clin Biochem. 2013;46(12):1079–1083. doi: 10.1016/j.clinbiochem.2013.05.046
  17. Tyurenkov IN, Perfilova VN, Nesterova AA, Glinka Y. Klotho protein and cardio-vascular system. Biochemistry (Moscow). 2021;86(2):158–174. (In Russ). doi: 10.31857/S0320972521020020
  18. Kim J, Hwang K, Park K, et al. Biological role of anti-aging pro tein Klotho. J Lifestyle Med. 2015;5(1):1–6. doi: 10.15280/jlm.2015.5.1.1
  19. Dalton GD, Xie J, An S, Huang C. New Insights into the Mechanism of Action of Soluble Klotho. Front Endocrinol (Lausanne). 2017; 8:323. doi: 10.3389/fendo.2017.00323
  20. Doi S, Zou Y, Togao O, et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–8665. doi: 10.1074/jbc.M110.174037
  21. Olejnik A, Franczak A, Krzywonos-Zawadzka A, et al. The biological role of Klotho protein in the development of cardiovascular diseases. Biomed Res Int. 2018;5171945. doi: 10.1155/2018/5171945
  22. Morshneva AV. FoxO transcription factors as multifunctional cell regulators. Tsitologiya. 2020;62(10):687–698. (In Russ). doi: 10.31857/S0041377120100041
  23. Cui W, Leng B, Wang G. Klotho protein inhibits H2O2-induced oxidative injury in endothelial cells via regulation of PI3K/AKT/Nrf2/HO-1 pathways. Can J Physiol Pharmacol. 2019;97(5):370–376. doi: 10.1139/cjpp-2018-0277
  24. Yao Y, Wang Y, Zhang Y, Liu C. Klotho ameliorates oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress via re gulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids Health Dis. 2017;16(1):77. doi: 10.1186/s12944-017-0447-0
  25. Takenaka T, Kobori H, Miyazaki T, et al. Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiol (Oxf). 2019;225(2):e13190. doi: 10.1111/apha.13190
  26. Lim SW, Jin L, Luo K, et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death Dis. 2017;8(8): e2972. doi: 10.1038/cddis.2017.365
  27. Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxi dative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–38034. doi: 10.1074/jbc.m509039200
  28. Thurston RD, Larmonier CB, Majewski PM, et al. Downregulation of aging-related Klotho gene in experimental colitis: the role of TNF and IFN-γ Gastroenterology. 2010;138(4):1384–1394.e2. doi: 10.1053/j.gastro.2009.12.002
  29. Mitobe M, Yoshida T, Sugiura H, et al. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Exp Nephrol. 2005;101(2):e67–e74. doi: 10.1159/000086500
  30. Oh HJ, Nam BY, Lee MJ, et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Perit Dial Int. 2015;35(1):43–51. doi: 10.3747/pdi.2013.00150
  31. Kusaba T, Okigaki M, Matui A, et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. 2010;107(45):19308–19313. doi: 10.1073/pnas.1008544107
  32. Semba RD, Cappola AR, Sun K, et al. Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc. 2011;59(9):1596–1601. doi: 10.1111/j.1532-5415.2011.03558.x
  33. Kokkinaki M, Abu-Asab M, Gunawardena N, et al. Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J Neurosci. 2013;33(41):16346–16359. doi: 10.1523/JNEUROSCI.0402-13.2013
  34. Zhao Y, Meng C, Wang Y, et al. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Am J Physiol Endocrinol Metab. 2016;310(4):E289–300. doi: 10.1152/ajpendo.00356.2015
  35. Graham SE, Clarke SL, Wu KH, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021;600(7890):675–679. doi: 10.1038/s41586-021-04064-3
  36. Arking DE, Becker DM, Yanek LR, et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet. 2003;72(5):1154–1161. doi: 10.1086/375035
  37. Majumdar V, Nagaraja D, Christopher R. Association of the functional KL-VS variant of Klotho gene with early-onset ischemic stroke. Biochem Biophys Res Commun. 2010;403(3-4):412–416. doi: 10.1016/j.bbrc.2010.11.045
  38. Oguro R, Kamide K, Kokubo Y, et al. Association of carotid atherosclerosis with genetic polymorphisms of the klotho gene in patients with hypertension. Geriatr Gerontol Int. 2010;10(4):311–318. doi: 10.1111/j.1447-0594.2010.00612
  39. Imamura A, Okumura K, Ogawa Y, et al. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta. 2006;371(1-2):66–70. doi: 10.1016/j.cca.2006.02.021
  40. Telci D, Dogan AU, Ozbek E, et al. KLOTHO gene polymorphism of G395A is associated with kidney stones. Am J Nephrol. 2011;33(4):337–343. doi: 10.1159/000325505
  41. Kawano KI, Ogata N, Chiano M, et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res. 2002;17(10):1744–1751. doi: 10.1359/jbmr.2002.17.10.1744
  42. Majumdar V, Jose D, Christopher R. Influence of Klotho genotypes on plasma NO(x) levels in South Indian population. Thromb Res. 2011;128(3):251–255. doi: 10.1016/j.thromres.2011.04.002
  43. Pavlatou MG, Remaley AT, Gold PW. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry. 2016;6(8):e876. doi: 10.1038/tp.2016.135
  44. Rhee EJ, Oh KW, Yun EJ, et al. Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. J Endocrinol Invest. 2006;29(7):613–618. doi: 10.1007/BF03344160
  45. Elghoroury EA, Fadel FI, Elshamaa MF, et al. Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatr Nephrol. 2018;33(6):1–9. doi: 10.1007/s00467-017-3877-z
  46. Valdivielso JM, Bozic M, Galimudi RK, et al. Association of the rs495392 Klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrol Dial Transplant. 2019;34(12):2079–2088. doi: 10.1093/ndt/gfy207
  47. Keles N, Caliskan M, Dogan B, et al. Is low serum Klotho level associated with alterations in coronary flow reserve? Echocardio graphy. 2016;33(6):881–888. doi: 10.1111/echo.13176
  48. Kresovich JK, Bulka CM. Low serum Klotho associated with all-cause mortality among a nationally representative sample of Ameri can adults. J Gerontol A Biol Sci Med Sci. 2022;77(3):452–456. doi: 10.1093/gerona/glab308
  49. Martin-Nunez E, Donate-Correa J, Lopez-Castillo A, et al. Soluble levels and endogenous vascular gene expression of KLOTHO are related to inflammation in human atherosclerotic disease. Clin Sci (Lond). 2017;131(21):2601–2609. doi: 10.1042/CS20171242
  50. Keles N, Caliskan M, Dogan B, et al. Low serum level of Klotho is an early predictor of atherosclerosis. Tohoku J Exp Med. 2015;237(1):17–23. doi: 10.1620/tjem.237.17
  51. Kazemi Fard T, Ahmadi R, Akbari T, et al. Klotho, FOXO1 and cytokines associations in patients with coronary artery disease. Cytokine. 2021;141:155443. doi: 10.1016/j.cyto.2021.155443
  52. Corsetti G, Pasini E, Scarabelli TM, et al. Decreased expression of Klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. J Geriatr Cardiol. 2016;13(8):701–711. doi: 10.11909/j.issn.1671-5411.2016.08.009
  53. Wei N, Zhang R, Zhu Z, et al. Adropin and Irisin deficiencies are associated with presence of diagonal earlobe crease in CAD pa tients. Front Cardiovasc Med. 2021;8:719763. doi: 10.3389/fcvm.2021.719763
  54. Wang J, Zhu ZF, Liu FQ, et al. Patients with earlobe crease may associate with lower concentration of the age-suppressing hormone Klotho. Int J Gen Med. 2021;14:8797–8803. doi: 10.2147/IJGM.S300309
  55. Martin-Nunez E, Perez-Castro A, Tagua VG, et al. Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Sci Rep. 2022;12(1):8422. doi: 10.1038/s41598-022-12548-z
  56. Liu W, Chen X, Wu M, et al. Recombinant Klotho protein enhances cholesterol efflux of THP-1 macrophage-derived foam cells via suppressing Wnt/β-catenin signaling pathway. BMC Cardiovasc Disord. 2020;20(1):120. doi: 10.1186/s12872-020-01400-9
  57. Sun X, Chen L, He Y, Zheng L. Circulating α-Klotho levels in relation to cardiovascular diseases: a mendelian randomization study. Front Endocrinol (Lausanne). 2022;13:842846. doi: 10.3389/fendo.2022.842846
  58. Navarro-Gonzalez JF, Donate-Correa J, Muros de Fuentes M, et al. Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart. 2014;100(1):34–40. doi: 10.1136/heartjnl-2013-304746
  59. Gocer K, Aykan AC, Kilinc M, Gocer NS. Association of serum FGF-23, klotho, fetuin-A, osteopontin, osteoprotegerin and hs-CRP levels with coronary artery disease. Scand J Clin Lab Invest. 2020;80(4):277–281. doi: 10.1080/00365513.2020.1728786
  60. Bergmark BA, Udell JA, Morrow DA, et al. Klotho, fibroblast growth factor-23, and the renin-angiotensin system — an analysis from the PEACE trial. Eur J Heart Fail. 2019;21(4):462–470. doi: 10.1002/ejhf.1424
  61. Xu JP, Zeng RX, He MH, et al. Associations between serum soluble α-Klotho and the prevalence of specific cardiovascular disease. Front Cardiovasc Med. 2022;9:899307. doi: 10.3389/fcvm.2022.899307
  62. Koga S, Ikeda S, Akashi R, et al. Serum soluble Klotho is inversely related to coronary artery calcification assessed by intravascular ultrasound in patients with stable coronary artery disease. J Cardiol. 2021;77(6):583–589. doi: 10.1016/j.jjcc.2020.11.014
  63. Abdallah E, Mosbah O, Khalifa G, et al. Assessment of the relationship between serum soluble Klotho and carotid intima-media thickness and left ventricular dysfunction in hemodialysis patients. Kidney Res Clin Pract. 2016;35(1):42–49. doi: 10.1016/j.krcp.2015.12.006
  64. Kespleri EV, Polunina OS, Аkhmineeva AKh, et al. Analysis of Klotho protein level in patients with myocardial infarction and concurrent chronic obstructive pulmonary disease with different ma nifestations. Tuberculosis and Lung Diseases. 2021;99(8):27–32. (In Russ). doi: 10.21292/2075-1230-2021-99-8-27-32
  65. Orces C.H. The association between serum soluble klotho levels and abdominal aorta calcification in older adults. Aging Clin Exp Res. 2022;34(6):1447–1452. doi: 10.1007/s40520-021-02053-0
  66. Zhou X, Li S, Wang Z, et al. Klotho protein: а potential therapeutic agent during myocardial ischemia and reperfusion. Int J Cardiol. 2015;191:227–228. doi: 10.1016/j.ijcard.2015.05.029
  67. Olejnik A, Krzywonos-Zawadzka A, Banaszkiewicz M, Bil-Lula I. Klotho protein contributes to cardioprotection during ischaemia/reperfusion injury. J Cell Mol Med. 2020;24(11):6448–6458. doi: 10.1111/jcmm.15293
  68. Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J. 2021. doi: 10.5603/CJ. a2021.0174
  69. Myung J, Beom JH, Kim JH, et al. Recombinant Klotho protein ameliorates myocardial ischemia/reperfusion injury by attenuating sterile inflammation. Biomedicines. 2022;10(4):894. doi: 10.3390/biomedicines10040894
  70. Qiu X, Guo Q, Xiong W, et al. Therapeutic effect of astragaloside-IV on bradycardia is involved in up-regulating klotho expression. Life Sci. 2016;144:94–102. doi: 10.1016/j.lfs.2015.11.021
  71. Cheng L, Zhang L, Yang J, Hao L. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upre gulating Klotho. Exp Ther Med. 2017;13(2):467–474. doi: 10.3892/etm.2016.3996
  72. Narumiya H, Sasaki S, Kuwahara N, et al. HMG-CoA reductase inhibitors up-regulate anti-aging klotho mRNA via RhoA inactivation in IMCD3 cells. Cardiovasc Res. 2004;64(2):331–336. doi: 10.1016/j.cardiores.2004.07.011
  73. Youssef OM, Morsy AI, El-Shahat MA, et al. The neuroprotective effect of simvastatin on the cerebellum of experimentally-induced diabetic rats through klotho upregulation: аn immunohistochemical study. J Chem Neuroanat. 2020;108:101803. doi: 10.1016/j.jchemneu.2020.101803
  74. Maquigussa E, Paterno JC, de Oliveira Pokorny GH, et al. Klotho and PPAR gamma activation mediate the renoprotective effect of Losartan in the 5/6 nephrectomy model. Front Physiol. 2018;9:1033. doi: 10.3389/fphys.2018.01033
  75. Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregu lates the expression of Klotho, the anti-ageing gene, in an experi mental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–813. doi: 10.1093/ndt/gfq537
  76. Haussler MR, Whitfield GK, Haussler CA, et al. 1,25-Dihydroxyvitamin D and Klotho: a tale of two renal hormones coming of age. Vitam Horm. 2016;100:165–230. doi: 10.1016/bs.vh.2015.11.005
  77. Pavlov S, Nikitchenko Y, Tykhonovska М. The impact of the chemical agents of different pharmacological groups on the klotho protein concentration in the cardiomyocyte and neurocyte suspension in 120-minute hypoxia in vitro. Georgian Med News. 2020;(306): 184–188

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Cardiovascular aspects of the Klotho protein.

Download (214KB)

Copyright (c) 2022 Alieva A.M., Reznik E.V., Teplova N.V., Voronkova K.V., Khachirova E.A., Sarakaeva L.R., Valiev R.K., Kotikova I.A., Nikitin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies