Interleukin-18 and cardiovascular diseases: a literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiovascular disease is a serious problem of modern healthcare, which is one of the leading causes of general mortality, reduction and loss of ability to work, as well as disability. The search and the study of new cardiovascular biological markers can allow the optimization of the diagnosis of cardiovascular diseases, development of laboratory tools for assessing the effectiveness of a treatment, and improving the prediction of possible adverse clinical outcomes.

The purpose of this review was to promote the consideration of interleukin-18 (IL-18) as a diagnostic and prognostic marker in cardiovascular pathology. For the first time, K. Nakamura et al. in 1989, described IL-18 and interferon-gamma (IFN-γ-inducing factor, IFN-γ-inducing factor, IGIF) as a new, previously unknown factor that induces the production of IFN-γ. Data obtained from rodent models and clinical studies have demonstrated that IL-18 is involved in the pathogenesis of several diseases, immune-inflammatory rheumatic conditions, systemic vasculitis, cardiovascular diseases, malignancy, central nervous system pathologies, inflammatory bowel disease, psoriasis, and diseases of the kidneys and lungs. In animal models of acute myocardial infarction, pressure overload, and left ventricular dysfunction, IL-18 has been demonstrated to increase cardiomyocyte hypertrophy, induce cardiac contractile dysfunction, and extracellular matrix remodeling. It is therefore expected that further scientific and clinical studies can demonstrate the possibility of using IL-18 as an additional laboratory tool for the diagnosis, risk stratification, and prediction of cardiovascular events in patients with a cardiac profile. The effect of blockade of this cytokine on reducing morbidity and mortality in patients with cardiovascular diseases remains to be assessed for more detail, while considering reasonable economic costs and the side effects of drugs.

About the authors

Amina Magomedovna Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University

Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Vera V. Lyalina

Pirogov Russian National Research Medical University

Email: vera_lyalina@mail.ru
ORCID iD: 0000-0002-4262-4060
SPIN-code: 7268-7198

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Lidia M. Shnakhova

Sechenov First Moscow State Medical University (Sechenov University)

Email: shnakhova_l_m@staff.sechenov.ru
ORCID iD: 0000-0003-3000-0987
Russian Federation, Moscow

Rose A. Arakelyan

Pirogov Russian National Research Medical University

Email: rosesharmazanova@yandex.ru
ORCID iD: 0000-0002-2500-197X

student

Russian Federation, Moscow

Elina A. Skripnichenko

Pirogov Russian National Research Medical University

Email: elkaskrip@gmail.com
ORCID iD: 0000-0001-6321-8419
SPIN-code: 3176-2080

graduate student

Russian Federation, Moscow

Ramiz K. Valiev

Loginov Moscow Clinical Scientific and Practical Center

Email: Radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Alik M. Rakhaev

Berbekov Kabardino-Balkarian State University

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174

MD, Dr Sci. (Med.), Professor

Russian Federation, Nal’chik

Madina Ya. Shavaeva

Berbekov Kabardino-Balkarian State University

Email: Shavaeva.madina@icloud.com
ORCID iD: 0000-0001-5907-3026
Russian Federation, Nal’chik

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Feng Y, Ye D, Wang Z, et al. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med. 2022; 9:818890. doi: 10.3389/fcvm.2022.818890
  2. Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi: 10.1016/j.jacc.2017.04.052
  3. Alieva AM, Reznik EV, Gasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345
  4. Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(9):145–149. (In Russ) doi: 10.26442/00403660.2019.09.00022
  5. Nakamura K, Okamura H, Wada M, et al. Endotoxininduced serum factor that stimulates gamma interferon production. Infect Immun.1989;57(2):590–595. doi: 10.1128/iai.57.2.590-595.1989
  6. Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun.1995;63(10):3966–3972. doi: 10.1128/iai.63.10.3966-3972.1995
  7. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 2018;281(1):138–153. doi: 10.1111/imr.12616
  8. Kalina U, Ballas K, Koyama N, et al. Genomic organization and regulation of the human interleukin18 gene. Scand J Immunol. 2000;52(6):525–530. doi: 10.1046/j.1365-3083.2000.00836.x
  9. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275(5297):206–209. doi: 10.1126/science.275.5297.206
  10. Heilig R, Dick MS, Sborgi L, et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol. 2018;48(4):584–592. doi: 10.1002/eji.201747404
  11. Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442–1455. doi: 10.1182/blood-2017-12-820852
  12. Niu J, Wu S, Chen M, et al. Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL-1β mediated neutrophil recruitment. Cytokine. 2019;120:115–124. doi: 10.1016/j.cyto.2019.04.019
  13. Oliveira AC, Gomes-Neto JF, Barbosa CD, et al. Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection. ELife. 2017;6:e30883. doi: 10.7554/eLife.30883
  14. Nanda JD, Ho TS, Satria RD, et al. IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res. 2021; 2021:8214656. doi: 10.1155/2021/8214656
  15. Rex DAB, Agarwal N, Prasad TSK, et al. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal. 2020;14(2):257–266. doi: 10.1007/s12079-019-00544-4
  16. Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J Immunol. 1998;161(7):3400–3407.
  17. Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol. 1999;162(9):5070–5077.
  18. Chow JYS, Wong CK, Cheung PFY, Lam CWK. Intracellular signaling mechanisms regulating the activation of human eosinophils by the novel Th2 cytokine IL-33: implications for allergic inflammation. Cell Mol Immunol. 2010;7(1):26–34. doi: 10.1038/cmi.2009.106
  19. Yoshimoto T, Mizutani H, Tsutsui H, Noben-Trauth N. IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol. 2000;1(2):132–137. doi: 10.1038/77811
  20. Nasonov EL, Avdeeva AS. Interleukin 18 in Immune-mediated rheumatic diseases and COVID-19. Rheumatology Science and Practice. 2022;60(2):195–204. (In Russ). doi: 10.47360/1995-4484-2022-195-204
  21. Harel M, Fauteux-Daniel S, Girard-Guyonvarc’h C, Gabay C. Balance between interleukin-18 and interleukin-18 binding protein in auto-inflammatory diseases. Cytokine. 2022;150:155781. doi: 10.1016/j.cyto.2021.155781
  22. Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019;20(3):649. doi: 10.3390/ ijms20030649
  23. O'Brien LC, Mezzaroma E, Van Tassell BW, et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med. 2014;20(1):221–229. doi: 10.2119/molmed.2014.00034
  24. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361. doi: 10.1038/nature08938
  25. Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol. 2018;233(3):2116–2132. doi: 10.1002/jcp.25930
  26. Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001;104(14):1598–1603. doi: 10.1161/hc3901.096721
  27. Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res. 2001;89(7): E41–E45. doi: 10.1161/hh1901.098735
  28. Elhage R, Jawien J, Rudling M, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res. 2003;59(1):234–240. doi: 10.1016/s0008-6363(03)00343-2
  29. Badimon L. Interleukin-18: A potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res. 2012;96(2):172–175; discussion 176–180. doi: 10.1093/cvr/cvs226
  30. Basiak M, Kosowski M, Hachula M, Okopien B. Plasma Concentrations of Cytokines in Patients with Combined Hyperlipidemia and Atherosclerotic Plaque before Treatment Initiation-A Pilot Study. Medicina (Kaunas). 2022;58(5):624. doi: 10.3390/medicina58050624
  31. Tang X. Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med. 2019;18(1):517–522. doi: 10.3892/etm.2019.7634
  32. Arapi B, Bayoğlu B, Cengiz M, et al. Increased Expression of Interleukin-18 mRNA is Associated with Carotid Artery Stenosis. Balkan Med J. 2018;35(3):250–255. doi: 10.4274/balkanmedj.2017.0323
  33. Scherr C, Albuquerque DC, Pozzan R, et al. Role of Interleukin-18 and the Thrombus Precursor Protein in Coronary Artery Disease. Arq Bras Cardiol. 2020;114(4):692–698. doi: 10.36660/abc.20190176
  34. Sadeghi M, Gheraati M, Soleimani A, et al. Serum interleukin-18 and extent of coronary artery disease in unstable angina. ARYA Atheroscler. 2018;14(3):122–127. doi: 10.22122/arya. v14i3.1370
  35. Sun H, Zhang J, Zheng Y, Shang S. Expressions and clinical significance of factors related to acute coronary syndrome. J Biol Regul Homeost Agents. 2018;32(2):299–305.
  36. Åkerblom A, James SK, Lakic TG, et al. PLATO Investigators. Interleukin-18 in patients with acute coronary syndromes. Clin Cardiol. 2019;42(12):1202–1209. doi: 10.1002/clc.23274
  37. Ponasenko AV, Khutornaya MV, Malyshev IYu, Barbarash OL. Interleukin 18 levels in patients with stable coronary artery disease is associated with IL18RAP and IL18R1 gene polymorphism and the risk of myocardial infarction. Russian Journal of Cardiology. 2020;25(10):3977. (In Russ). doi: 10.15829/1560-4071-2020-3977
  38. Hoseini F, Mahmazi S, Mahmoodi K, et al. Evaluation of the Role of -137G/C Single Nucleotide Polymorphism (rs187238) and Gene Expression Levels of the IL-18 in Patients with Coronary Artery Disease. Oman Med J. 2018;33(2):118–125. doi: 10.5001/omj.2018.23
  39. Ridker PM, MacFadyen JG, Thuren T, Libby P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J. 2020;41(23):2153–2163. doi: 10.1093/eurheartj/ehz542
  40. Korotaeva AA, Samoilova EV, Mindzaev DR, et al. Pro-inflammatory cytokines in chronic cardiac failure: state of problem. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(11):1389–1394. (In Russ). doi: 10.26442/00403660.2021.11.201170
  41. Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849–863. doi: 10.1007/s10557-020-07071-0
  42. Mallat Z, Heymes C, Corbaz A, et al. Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J. 2004;18(14):1752–1754. doi: 10.1096/fj.04-2426fje
  43. Di Somma S, Pittoni V, Raffa S, et al. IL-18 stimulates B-type natriuretic peptide synthesis by cardiomyocytes in vitro and its plasma levels correlate with B-type natriuretic peptide in non-overloaded acute heart failure patients. Eur Heart J Acute Cardiovasc Care. 2017;6(5):450–461. doi: 10.1177/2048872613499282
  44. Sanchez I, Santana S, Escobar C, et al. Clinical implications of different biomarkers in elderly patients with heart failure. Biomark Med. 2014;8(4):535–541. doi: 10.2217/bmm.14.24
  45. Ji CL, Nomi A, Li B, et al. Increased Plasma Soluble Fractalkine in Patients with Chronic Heart Failure and Its Clinical Significance. Int Heart J. 2019;60(3):701–707. doi: 10.1536/ihj.18-422
  46. Iravani Saadi M, Babaee Beigi MA, Ghavipishe M, et al. The circulating level of interleukins 6 and 18 in ischemic and idiopathic dilated cardiomyopathy. J Cardiovasc Thorac Res. 2019;11(2):132–137. doi: 10.15171/jcvtr.2019.23
  47. Yang YF, Liang YJ. Adenine decreases hypertrophic effects through interleukin-18 receptor. Chin J Physiol. 2019;62(4):139–147. doi: 10.4103/CJP.CJP_18_19
  48. Li X, Guo X, Chang Y, et al. Analysis of alterations of serum inflammatory cytokines and fibrosis makers in patients with essential hypertension and left ventricular hypertrophy and the risk factors. Am J Transl Res. 2022;14(6):4097–4103.
  49. Badawy A, Nigm DA, Ezzat GM, Gamal Y. Interleukin 18 as a new inflammatory mediator in left ventricular hypertrophy in children with end-stage renal disease. Saudi J Kidney Dis Transpl. 2020;31(6):1206–1216. doi: 10.4103/1319-2442.308329
  50. Güntürk EE, Güntürk İ, Topuz AN, et al. Serum interleukin-18 levels are associated with non-dipping pattern in newly diagnosed hypertensive patients. Blood Press Monit. 2021;26(2):87–92. doi: 10.1097/MBP.0000000000000487
  51. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci USA. 2001;98(5):2871–2876. doi: 10.1073/pnas.041611398
  52. Ni XQ, Hu ZY. Remifentanil improves myocardial ischemia-reperfusion injury in rats through inhibiting IL-18 signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3915–3922. doi: 10.26355/eurrev_202004_20858
  53. Venkatachalam K, Prabhu SD, Reddy VS, et al. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem. 2009;284(12):7853–7865. doi: 10.1074/jbc.M808824200
  54. Gu H, Xie M, Xu L, et al. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl Int. 2015;28(12):1436–1444. doi: 10.1111/tri.12683
  55. Suehiro C, Suzuki J, Hamaguchi M, et al. Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation. Atherosclerosis. 2019;289:14–20. doi: 10.1016/j.atherosclerosis.2019.08.003
  56. Hu H, Zhang G, Hu H, et al. Interleukin-18 Expression Increases in the Aorta and Plasma of Patients with Acute Aortic Dissection. Mediators Inflamm. 2019; 2019:8691294. doi: 10.1155/2019/869129

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Pathogenetic links associated with IL-18 in CVD patients (adapted from [23]).

Download (64KB)

Copyright (c) 2022 Alieva A.M., Teplova N.V., Lyalina V.V., Shnakhova L.M., Arakelyan R.A., Skripnichenko E.A., Valiev R.K., Rakhaev A.M., Shavaeva M.Y., Nikitin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies