Ферментативная конверсия промышленных целлюлозно-бумажных полуфабрикатов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Определена реакционная способность восьми промышленно вырабатываемых образцов целлюлозы и полуцеллюлозы при ферментативном гидролизе препаратами гликозил-гидролаз B151 и F10, продуцируемых штаммом гриба-аскомицета Penicillium verruculosum. Впервые показано, что среди волокнистых полуфабрикатов, доступных на рынке целлюлозно-бумажной промышленности России, максимально высокий выход глюкозы от исходной древесины при биокатализе с использованием целлюлаз и гемицеллюлаз характерен для полуцеллюлоз, полученных после варки лиственной древесины с зеленым щелоком. Установлена высокая степень ферментативной конверсии беленой сульфатной целлюлозы из хвойной древесины, что в сочетании с возможностью получения модифицированных полисахаридных материалов из негидролизуемого остатка делает данный субстрат наиболее перспективным для развития биохимических подходов на предприятиях целлюлозно-бумажной промышленности. Показано, что высушивание полуфабрикатов отрицательно влияет на эффективность гидролиза целлюлозы, а механический размол улучшает показатели процесса ферментативного осахаривания.

Полный текст

Доступ закрыт

Об авторах

А. С. Аксенов

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: a.s.aksenov@narfu.ru
Россия, Архангельск

И. Г. Синельников

Федеральный исследовательский центр “Фундаментальные основы биотехнологий” РАН

Email: a.s.aksenov@narfu.ru
Россия, Москва

А. Р. Шевченко

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Архангельск

К. А. Майорова

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Архангельск

Д. Г. Чухчин

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Архангельск

Д. О. Осипов

Федеральный исследовательский центр “Фундаментальные основы биотехнологий” РАН

Email: a.s.aksenov@narfu.ru
Россия, Москва

М. В. Семёнова

Федеральный исследовательский центр “Фундаментальные основы биотехнологий” РАН

Email: a.s.aksenov@narfu.ru
Россия, Москва

О. А. Синицына

Химический факультет Московского государственного университета имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Москва

А. М. Рожкова

Федеральный исследовательский центр “Фундаментальные основы биотехнологий” РАН

Email: a.s.aksenov@narfu.ru
Россия, Москва

Е. В. Новожилов

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Архангельск

А. П. Синицын

Федеральный исследовательский центр “Фундаментальные основы биотехнологий” РАН; Химический факультет Московского государственного университета имени М.В. Ломоносова

Email: a.s.aksenov@narfu.ru
Россия, Москва; Москва

Список литературы

  1. Braghiroli F.L., Passarini L. // Current Forestry Reports. 2020. V. 6. P. 172–183. https://doi.org/10.1007/s40725-020-00112-9
  2. Gonçalves M.C.P., Romanelli J.P., Cansian A.B.M., Pucci E.F.Q., Guimaraes J.R., Tardioli P.W., Saville B.A. // Ind. Crop. Prod. 2022. V. 186. 115213. https://doi.org/10.1016/j.indcrop.2022.115213
  3. Семёнова М.В., Гусаков А.В., Телицин В.Д., Синицын А. П. // Прикл. биохимия и микробиология. 2021. Т. 57. № 5. С. 477–484. https://doi.org/10.31857/S0555109921050147
  4. Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Прикл. биохимия и микробиология. 2020. Т. 56. № 6. С. 551–560. https://doi.org/10.31857/S0555109920060161
  5. Zhou B., Wang Y., Jiang Z., Salam A., Li K. // J. Wood Chem. Technol. 2021. V. 41. № 4. P. 150–159. https://doi.org/10.1080/02773813.2021.1938130
  6. Kumar B., Verma P. // Fuel. 2021. V. 288. 119622. https://doi.org/10.1016/j.fuel.2020.119622
  7. Rabinovich M. L. // Cell. Chem. Tech. 2010. V. 44. № 4. P. 173–186.
  8. Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J. // Biores. Technol. 2010. V. 101. № 13. P. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
  9. Zhu J.Y., Pan X.J. // Biores. Tech. 2010. V. 101. № 13. P. 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007
  10. Hendriks A.T.W.M., Zeeman G. // Biores. Technol. 2009. V. 100. № 1. P. 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
  11. Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M. // Molecules. 2018. V. 23. № 11. 2937. https://doi.org/10.3390/molecules23112937
  12. Asada C., Sasaki C., Uto Y., Sakafuji J., Nakamura Y. // Biochem. Eng. J. 2012. V. 60. P. 25–29. https://doi.org/10.1016/j.bej.2011.09.013
  13. Pielhop T., Amgarten J., von Rohr P.R., Studer M.H. // Biotech. Biofuels. 2016. V. 9. № 1. P. 1–13. https://doi.org/10.1186/s13068-016-0567-1
  14. Doménech P., Manzanares P., Álvarez C., Ballesteros M., Duque A. // Holzforschung. 2020. V. 75. № 3. P. 250–259. https://doi.org/10.1515/hf-2020-0068
  15. Vaidya A.A., Murton K.D., Smith D.A., Dedual G. // Biomass conv. Bioref. 2022. V. 12. № 11. P. 5427–5442. https://doi.org/10.1007/s13399-022-02373-9
  16. Xu X., Wang K., Zhou Y., Lai C., Zhang D., Xia C., Pugazhendhi A. // Fuel. 2023. V. 338. Р. 127361. https://dx.doi.org/10.1016/j.fuel.2022.127361
  17. Zhao X., Zhan Y., Han L., Sun X., Zhang T., Zhao Z. // Processes. 2023. V. 11. № 4. P. 1293. https://doi.org/10.3390/pr11041293
  18. Yin X., Wei L., Pan X., Liu C., Jiang J., Wan. K. // Front. Plant Sci. 2021. V. 12. 670061. https://doi.org/10.3389/fpls.2021.670061
  19. Moniruzzaman M., Goto, M. // Appl. Ionic liq. Biotech. 2019. P. 61–77. https://doi.org/10.1007/10_2018_64
  20. Wu W., Li P., Huang L., Wei Y., Li J., Zhang L., Jin Y. // Biomass. 2023. V. 3. № 1. P. 96–107. https://doi.org/10.3390/biomass3010007
  21. Przybysz Buzała K., Kalinowska H., Małachowska E., Boruszewski P., Krajewski K., Przybysz P. // Energies. 2019. V. 12. № 15. 2952. https://doi.org/10.3390/en12152952
  22. Cai C., Zhang C., Li N., Liu H., Xie J., Lou H., Pan X., Zhu J. Y., Wang F. // Renew. Sust. En. Rev. 2023. V. 183. 113445. https://doi.org/10.1016/j.rser.2023.113445
  23. Van Wyk J.P.H. // Biomass Bioen. 1999. V. 16. № 3. P. 239–242.
  24. Jin Y., Jameel H., Chang H. M., Phillips R. // J. Wood Chem. Tech. 2010. V. 30. № 1. P. 86–104. https://dx.doi.org/10.1080/02773810903578360
  25. Buzała K., Przybysz P., Rosicka-Kaczmarek J., Kalinowska H. // Cellulose. 2015. V. 22. P. 663–674. https://doi.org/10.1007/s10570-014-0522-x
  26. Доценко Г.С., Чекушина А.В., Кондратьева Е.Г., Правильников А.Г., Андрианов Р.М., Осипов Д.О. и др. // Лес. Вест. 2012. Т. 8. № 91. С. 129–135.
  27. Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 4. С. 312–333. https://doi.org/10.55959/MSU0579-9384-2-2023-64-4312-333
  28. Новожилов Е.В., Аксенов А.С., Демидов М.Л., Чухчин Д.Г., Доценко Г.С., Осипов, Д.О., Синицын А.П. // Кат. Пром. 2014. Т. 4. С. 74–80. https://dx.doi.org/10.1134/S2070050414040138
  29. Новожилов Е.В., Синельников И.Г., Аксенов А.С., Чухчин Д.Г., Тышкунова И.В., Рожкова А.М. и др.// Кат. Пром. 2015. Т. 5. С. 78–83. https://doi.org/10.18412/1816-0387-2015-5-78-83
  30. Aksenov A.S., Tyshkunova I.V., Poshina D.N., Guryanova A.A., Chukhchin D.G., Sinelnikov I.G. et. al. // Catalysts. 2020. V. 10. 536. https://doi.org/10.3390/catal10050536
  31. Shevchenko A.R., Mayorova K.A., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. еt al // Fermentation. 2023. V. 9. 936. https://doi.org/10.3390/fermentation9110936
  32. Saini J.K., Patel A.K., Adsul M., Singhania R.R. // Renewable Energy. 2016. V. 98. P. 29–42. https://dx.doi.org/10.1016/j.renene.2016.03.089
  33. Cai C., Li J., Hirth K., Huber G. W., Lou H., Zhu J. Y. // ChemSusChem. 2020. V. 13. P. 4649–4659. https://doi.org/10.1002/cssc.202001120
  34. Brondi M.G., Elias A. M., Furlan F.F., Giordano R.C., Farinas C.S. // Sci. Rep. 2020. V. 10. 7367. https://doi.org/10.1038/s41598-020-64316-6
  35. Aldaeus F., Larsson K., Srndovic J. S., Kubat M., Karlström K., Peciulyte A., Olsson L., Larsson, P. T. // Cellulose. 2015. V. 22. P. 3991–4002. https://doi.org/10.1007/s10570-015-0766-0
  36. Huang C., Li R., Tang W., Zheng Y., Meng, X. // Fermentation. 2022. V. 8, 558. https://doi.org/10.3390/fermentation8100558
  37. Wang Z.J., Lan T.Q., Zhu J.Y. // Biotech. Biofuels. 2013. V. 6. 9. https://doi.org/10.1186/1754-6834-6-9
  38. Willför S., Pranovich A., Tamminen T., Puls J., Laine C., Suurnäkki A., Saake B., Uotila K., Simolin H., Hemming J., Holmbom B. // Ind. Crops Prod. 2009. V. 29. P. 571–580. https://doi.org/10.1016/j.indcrop.2008.11.003
  39. Ghose T.K. // Pure Appl. Chem. 1987. V. 59, P. 257–268. https://doi.org/10.1351/pac198759020257
  40. Nelson, N. // J. Biol. Chem. 1944. V. 153. № 2. P. 375–380. https://doi.org/10.1016/S0021-9258(18)71980-7
  41. Lowry O.H., Roseborough N.J., Farr A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275. https://dx.doi.org/10.1016/S0021–9258(19)52451–6
  42. Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. // Biores. Technol. 2005. V. 96. № 6. P. 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
  43. Sun S., Sun S., Cao X., Sun R. // Biores. Technol. 2016. V. 199. P. 49–58. https://doi.org/10.1016/j.biortech.2015.08.061
  44. Холькин Ю.И. Технология гидролизных производств. М.: Лесная промышленность, 1989. 496 с.
  45. Ek M.; Gellerstedt G., Henriksson G. Pulping Chemistry and Technology. / Eds. M. Ek, G. Gellerstedt, G.r Henriksson. Berlin: Walter de Gruyter GmbH, 2009. V. 2. 471 p.
  46. Мингазова Л.А., Канарский А. В., Крякунова Е.В., Канарская З.А. // Лесн. Журн. 2020. Т. 2. № 374. С. 146–158. https://doi.org/10.37482/0536-1036-2020-2-146-158
  47. Новожилов Е.В. // Лесн. Журн. 1999. Т. 2. № 3. С. 180–188.
  48. Ko C.H., Chen F.J., Lee J.J., Tzou D.L.M. // Cellulose. 2011. V. 18. P. 1043–1054. https://doi.org/10.1007/s10570-011-9534-y
  49. Laivins, G.V., Scallan, A.M. // Prod. Paper. 1993. V. 2. P. 1235–1260. https://doi.org/10.15376/frc.1993.2.1235
  50. Rebuzzi, F., Evtuguin, D.V. // Macromol. Symposia. 2005. V. 232. № 1. P. 121–128. https://doi.org/10.1002/masy.200551414
  51. Kamaya Y. // J. Ferm. Bioeng. 1996. V. 82. P. 549–553. https://doi.org/10.1016/S0922-338X(97)81250-0
  52. Garcia-Ubasart J., Torres A.L., Vila C., Pastor F.I.J., Vidal T. // Ind. Crop. Prod. 2013. V. 44. P. 71–76. https://doi.org/10.1016/j.indcrop.2012.10.019
  53. Shevchenko A.R., Tyshkunova I.V., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. et al. // Catalysts. 2023. V. 13. № 1. 103. https://doi.org/10.3390/catal13010103
  54. Mayorova K., Aksenov A., Shevchenko A. // AIP Conf. Proc. 2023. V. 2931, P. 030005-1-030005-8 https://doi.org/10.1063/5.0178421

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Показатели выхода глюкозы от абсолютно сухой древесины (%), используемой в технологических процессах получения полуфабрикатов из лиственных (а) и хвойных пород (б): 1 – до высушивания; 2 – после размола; 3 – после высушивания.

Скачать (26KB)
3. Рис. 2. Электронные микрофотографии образцов исходных волокнистых полуфабрикатов ЦБП и частично гидролизованных карбогидразами P. verruculosum: а – волокна нейтрально-сульфитной полуцеллюлозы; б – волокна полуцеллюлозы, полученной варкой с зеленым щелоком; в-волокна лиственной беленой сульфатной целлюлозы; г – волокна хвойной беленой сульфатной целлюлозы; д – волокна хвойной беленой сульфитной целлюлозы; е – волокна нейтрально-сульфитной полуцеллюлозы после ферментативной обработки (48 ч, степень конверсии 34%); ж – волокна полуцеллюлозы, полученной варкой с зеленым щелоком после ферментативной обработки (48 ч, степень конверсии 39%); з – волокна лиственной беленой сульфатной целлюлозы после ферментативной обработки (22 ч; степень конверсии 50%); и – волокна хвойной беленой сульфатной целлюлозы после ферментативной обработки (24 ч, степень конверсии 62%); к – волокна хвойной беленой сульфитной целлюлозы после ферментативной обработки (24 ч; степень конверсии 48%). Масштабная линейка – 10 мкм.

Скачать (127KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».