Optimization of transformation conditions by electroporation for Mycobacterium abscessus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Efficient transformation of mycobacteria, in particular M. abscessus , is significantly complicated by the specific structure of their cell wall. The most widely used and effective method of introducing plasmid and phage DNA into mycobacterial cells is electroporation. The efficiency of electroporation is significantly affected by many factors, such as the nature of the DNA, the selective marker, growth supplements, the parameters of the electrical impulse, the species and the strain of the recipient mycobacterium. Although conditions for efficient electroporation for the slow-growing pathogen M. tuberculosis and the fast-growing saprophyte M. smegmatis have been described in details, recommendations for M. abscessus are scattered and even contradictory. Here it was established that efficient transformation of M. abscessus ATCC 19977 with the replicative vector pMV261 by electroporation is possible when using a logarithmic growth phase culture in a fairly wide range of optical density values OD 600 = 0.8–4.2, while cooling has little effect on the transformation frequency. A critical parameter is the mass of the introduced DNA. It has been established that the number of transformants obtained per 1 µg of DNA increases proportionally to the square of its mass. In case of introducing less than 0.5 μ g of plasmid DNA the efficiency of electroporation is insufficient.

Sobre autores

E. Zakharieva

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

B. Martini

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

E. Salina

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Email: elenasalina@yandex.ru
Moscow, 119071 Russia

Bibliografia

  1. Degiacomi G ., Sammartino J . C ., Chiarelli L . R ., Ri abova O ., Makarov V ., Pasca M . R . // Int . J . Mol . Sci . 2019. V. 20. № 23. P. 5868. https://doi.org/10.3390/ijms20235868
  2. To K., Cao R., Yegiazaryan A., Owens J., Venketara man V. // J. Clin. Med. 2020. V. 9. № 8. P. 2541. https ://doi.org/10.3390/jcm9082541
  3. Honda J.R., Virdi R., Chan E.D. // Front. Microbiol. 2018. V. 9. P. 2029. https://doi.org/10.3389/fmicb.2018.02029
  4. Schiff H.F., Jones S., Achaiah A., Pereira A., Stait G., Green B . // Sci. Rep. 2019. V. 9. № 1. P. 1730. https://doi.org/10.1038/s41598-018-37350-8
  5. Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanza-ro A., Daley C., Gordin F. et al. // Am. J. Respir. Crit. Care Med. 2007. V. 175. № 4. P. 367–416. https://doi.org/10.1164/rccm.200604-571ST
  6. Brown-Elliott B.A., Wallace R.J. // Clin. Microbiol. Rev. 2002. V. 15. № 4. P. 716–746. https://doi.org/10.1128/CMR.15.4.716-746.2002
  7. Falkinham J.O. // Clin. Chest Med. 2015. V. 36. № 1. P. 35–41. https://doi.org/10.1016/j.ccm.2014.10.003
  8. Zwietering M.H., Jongenburger I., Rombouts F.M., Van’t Riet K. // Appl. Environ. Microbiol. 1990. V. 56. № 6. P. 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990
  9. Johansen M.D., Herrmann J.L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. № 7. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1
  10. Koh W.J., Stout J.E., Yew W.W. // Int. J. Tuberc. Lung Dis. 2014. V. 18. № 10. P. 1141–1148. https://doi .org/10.5588/ijtld.14.0134
  11. Koh W.J., Jeon K., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H. et al. // Am. J. Respir. Crit. Care Med. 2011. V. 183. № 3. P. 405–410. https://doi.org /10.1164/rccm.201003-0395OC
  12. Lopeman R.C., Harrison J., Desai M., Cox J.A. // Microorganisms. 2019. V. 7. № 3. P. 90. https://doi.org/10.3390/microorganisms7030090
  13. Gopalaswamy R., Shanmugam S., Mondal R., Subbi- an S. // J. Biomed. Sci. 2020. V. 27. № 1. P. 74. https://doi.org/10.1186/s12929-020-00667-6
  14. Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P. et al. // Science. 2016. V. 354. № 6313. P. 751 –757. https://doi.org/10.1126/science.aaf8156
  15. Brown-Elliott B.A., Nash K.A., Wallace R.J. // Clin. Microbiol. Rev. 2012. V. 25. № 3. P. 545–582. https://doi.org/10.1128/CMR.05030-11
  16. Sharma S.K., Upadhyay V. // Indian J. Med. Res. 2020. V. 152. № 3. P. 185–226. https://doi. org/10.4103/ijmr.IJMR_902_20
  17. Chen J., Zhao L., Mao Y., Ye M., Guo Q., Zhang Y. et al. // Front. Microbiol. 2019. V. 10. P. 1977. https://doi.org/10.3389/fmicb.2019.01977
  18. Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M. et al . // PLoS One. 2009. V. 4. № 6. P. e5660. https://doi.org/10.1371/journal. pone.0005660
  19. Jacobs W.R., Kalpana G.V., Cirillo J.D., Pascopella L., Snapper S.B., Udani R.A. et al . // Methods Enzymol. 1991. V. 204. P. 537–555. https://doi.org/10.1016/0076-6879(91)04027-L
  20. Mycobacteria Protocols / Eds. T.Parish, A. Kumar N.Y.: Humana Press, 2021. 736 p.
  21. Campo-Pérez V., Cendra M.D.M., Julián E., Tor- rents E. // N. Biotechnol. 2021. V. 63. P. 10–18. https://doi.org/10.1016/j.nbt.2021.02.003
  22. Medjahed H., Singh A.K. Genetic Manipulation of Mycobacterium abscessus. // Curr. Protoc. Microbiol. 2010. V. 18. № 1. P. 10D-2. https://doi.org/10.1002/9780471729259.mc10d02s18
  23. Stover C.K., de la Cruz V.F., Fuerst T.R., Burlein J.E., Benson L.A., Bennett L.T. et al. // Nature. 1991. V. 351. № 6326. P. 456–460. https://doi.org/10.1038/351456a0
  24. Kalpana G. V., Bloom B. R., Jacobs W. R. // Proc. Natl. Acad. Sci. 1991. V. 88. № 12. P. 5433–5437. https:// doi: 10.1073/pnas.88.12.5433
  25. Snapper S.B., Melton R.E., Mustafa S., Kieser T., Jacobs W.R. Jr // Mol. Microbiol. 1990. V. 4. № 11. P. 1911–1919. https://doi.org/10.1111/ j.1365-2958.1990.tb02040.x
  26. Lee S.H., Cheung M., Irani V., Carroll J.D., Inami- ne J.M., Howe W.R. et al. // Tuberculosis. 2002. V. 82. № 4–5. P. 167–174. https://doi .org/10.1054/tube.2002.0335
  27. Rominski A., Selchow P., Becker K., Brülle J.K., Dal Molin M., Sander P. // J. Antimicrob. Chemother. 2017. V. 72. № 8. P. 2191–2200. https://doi. org/10.1093/jac/dkx125
  28. Akusobi C., Benghomari B.S., Zhu J., Wolf I.D., Singhvi S., Dulberger C. L. et al. // Elife. 2022. V. 11. P. e71947. https://doi.org/10.7554/eLife.71947
  29. Viljoen A., Gutiérrez A.V., Dupont C., Ghigo E., Kre- mer L. // Front. Cell. Infect. Microbiol. 2018. V. 8. P. 69. https://doi.org/10.3389/fcimb.2018.00069
  30. Wards B.J., Collins D.M. // FEMS Microbiol. Lett. 1996. V. 145. № 1. P. 101 –105. https://doi.org/10.1111/j.1574-6968.1996.tb08563.x
  31. David M., Lubinsky-Mink S., Ben-Zvi A., Ulitzur S., Khun J., Suissa M. // Plasmid. 1992. V. 28. № 3. P. 267–271. https://doi.org/10.1016/0147-619X(92)90059-J

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).