Exogenous Abscisic Acid and Its Effect on Seed Germination of Wheat and Triticale

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study investigated the effects of exogenous abscisic acid (ABA) on early germination processes in seeds of two cereal crops: wheat and triticale (a hybrid of wheat and rye). A clear relationship was established between growth processes and both the concentration of ABA and the imbibition stage at which ABA was applied. At moderate to high concentrations (10–6–10–4 M), ABA acted as an inhibitor of physiological processes. Early stages of seed germination, specifically those involving physical swelling and radicle emergence, were found to be highly sensitive to ABA. Furthermore, a high concentration of exogenous ABA (10–4 M) inhibited the mobilization of protein reserves in the wheat embryo, which may contribute to the overall inhibition of germination.

About the authors

L. I. Arabova

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: l.arabova@gmail.com
Moscow, Russia

L. V. Chumikina

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, Russia

R. I. Arabov

Skolkovo Institute of Science and Technology

Moscow, Russia

A. F. Topunov

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, Russia

References

  1. Ali F., Qanmber G., Li F., Wang Z. // J. Adv. Res. 2022. V. 35. P. 199–214. https://doi.org/10.1016/j.jare.2021.03.011
  2. Rajjou L., Duval M., Gallardo K., Catusse J., Bally J., Job C., Job D. // Annu. Rev. Plant Biol. 2012. V. 63. P. 507–533. https://doi.org/10.1146/annurev-arplant-042811-105550
  3. Bewley J.D., Bradford K., Hilhorst H., Nonogaki H. Seeds: Physiology of Development, Germination and Dormancy. Springer, 2013. 3rd Ed. 392 p. https://doi.org/10.1007/978-1-4614-4693-4
  4. Lutts S., Benincasa P., Wojtyla L., Kubala S., Pace R., Lechowska K. et al. New Challenges in Seed Biology – Basic and Translational Research Driving Seed Technology. / Eds. S. Araujo, A. Balestrazzi. IntechOpen. 2016. http://dx.doi.org/10.5772/64420
  5. Verma V., Ravindran P., Kumar P.P. // BMC Plant Biol. 2016. V. 16. № 1. Art. 86. https://doi.org/10.1186/s12870-016-0771-y
  6. Чумикина Л.В., Арабова Л.И., Колпакова В.В., Топунов А.Ф. // Химия растительного сырья. 2021. № 4. С. 5–30. https://doi.org/10.14258/jcprm.2021049196
  7. Delaix C.L., Tomiozzo A., Weber G., Melo Y.L., de Vargas A.N., Pinheiro M.M., Trenz T.S. // Environ. Exp. Bot. 2025. V. 229. Art. 106081. https://doi.org/10.1016/j.envexpbot.2024.106081
  8. Brookbank B.P., Patel J., Gazzarrini S., Nambara E. // Genes. 2021. V. 12. № 12. Art. 1936. https://doi.org/10.3390/genes12121936
  9. Singh A., Roychoudhury A. // Plant Cell Rep. 2023. V. 42. № 6. 961–974. https://doi.org/10.1007/s00299-023-03013-w
  10. Kumar R., Dasgupta I. // Plant Physiol. Biochem. 2024. V. 215. Art. 109046. https://doi.org/10.1016/j.plaphy.2024.109046
  11. Li S., Liu S., Zhang Q., Cui M., Zhao M., Li N. et al. // Front. Plant Sci. 2022. V. 13. Art 1050132. https://doi.org/10.3389/fpls.2022.1050132
  12. Sah S.K., Reddy K.R., Li J. // Front. Plant Sci. Sec. Plant Biotechnology. 2016. V. 7. https://doi.org/10.3389/fpls.2016.00571
  13. Humplík J.F., Bergougnoux V., Volkenburgh E.V. // Trends Plant Sci. 2017. V. 22. № 10. P. 830–841. https://doi.org/10.1016/j.tplants.2017.07.009
  14. Guo W.L., Chen R.G., Gong Z.H., Yin Y.X., Ahmed S.S., He Y.M. // Genet. Mol. Res. 2012. V. 11. № 4. P. 4063–4080. https://doi.org/10.4238/2012.September.10.5
  15. Latif H.H. // Pak. J. Bot. 2014. V. 46. № 3. P. 973–982.
  16. Kosakivska I.V., Vedenicheva N.P., Babenko L.M., Voytenko L.V., Romanenko K.O., Vasyuk V.A. // Mol. Biol. Rep. 2022. V. 49. № 1. 617–628. https://doi.org/10.1007/s11033-021-06802-2
  17. Okamoto M., Tatematsu K., Matsui A., Morosawa T., Ishida J., Tanaka M. et al. // Plant J. 2010. V. 62. № 1. P. 39–51. https://doi.org/10.1111/j.1365-313X.2010.04135.x
  18. Пиголев А.В., Дегтярев Е.А., Мирошниченко Д.Н., Савченко Т.В. // Сельскохозяйственная биология. 2023. Т. 58. № 1. С. 3–22. https://doi.org/10.15389/agrobiology.2023.1.3rus
  19. Арабова Л.И., Чумикина Л.В., Топунов А.Ф. // Вестник Мичуринского государственного аграрного университета. 2011. № 2. Т. 1. С. 81–87.
  20. Чумикина Л.В., Арабова Л.И., Колпакова В.В., Топунов А.Ф. // Прикл. биохимия и микробиология. 2019. Т. 55. № 1. С. 77–85. https://doi.org/10.1134/S0555109919010045
  21. Гумилевская Н.А., Чумикина Л.В., Арабова Л.И., Зимин М.В., Шатилов В.Р. // Физиология растений. 1996. Т. 43. № 2. С. 247–255.
  22. Jacobsen J.V., Pearce D.W., Poole A.T., Pharis R.P., Mander L.N. // Physiol. Plant. 2002. V. 115. № 3. P. 428–441. https://doi.org/10.1034/j.1399-3054.2002.1150313.x
  23. Millar A.A., Jacobsen J.V., Ross J.J., Helliwell C.A., Poole A.T., Scofield G. et al. // Plant J. 2006. V. 45. № 6. P. 942–954. https://doi.org/10.1111/j.1365-313X.2006.02659.x
  24. Obroucheva N.V., Lityagina S.V., Sinkevich I.A. // Int. J. Cell Sci. & Mol. Biol. 2019. V. 5. № 4. Art. 555667. https://doi.org/10.19080/IJCSMB.2019.05.555667
  25. Abhilasha A., Roy Choudhury S. // Plants. 2021. V. 10. № 12. Art. 2769. https://doi.org/10.3390/plants10122769
  26. Mo W., Zheng X., Shi Q., Zhao X., Chen X., Yang Z., Zuo Z. // Front. Plant Sci. Sec. Plant Abiotic. Stress. 2024. V. 15. https://doi.org/10.3389/fpls.2024.1437184
  27. Мартын Г.И., Берестецкий В.А., Мусатенко Л.И., Сытник К.М. // Физиология и биохимия культ. растений. 1991. Т. 23. № 6. C. 546–551.
  28. Ma X.L., Wang W.Y, Zhou H.K, Li W.J., Li J., Li Y. et al. // Chin. J. Eco-Agricul. 2024. V. 32. № 11. P. 1882−1890. https://doi.org/10.12357/cjea.20240185
  29. Schopfer P., Plachy C. // Plant Physiol. 1984. V. 76. № 1. P. 155–160. https://doi.org/10.1104/pp.76.1.155
  30. Schopfer P., Plachy C. // Plant Physiol. 1985. V. 77. № 3. P. 676–686. https://doi.org/10.1104/pp.77.3.676
  31. Steinbrecher T., Leubner-Metzger G. // J. Exp. Bot. 2017. V. 68. № 4. P. 765–783. https://doi.org/10.1093/jxb/erw428
  32. da Silva E.A., Toorop P.E., van Aelst A.C., Hilhorst H.W. // Planta. 2004. V. 220. № 2. P. 251–261. https://doi.org/10.1007/s00425-004-1344-0
  33. Footitt S., Finch-Savage W.E. Plant Physiology and Function / Ed. S. Clemens. New York: Springer, 2017. V. 6. 1000 р. https://doi.org/10.1007/978-1-4614-7611-5_7-1
  34. Garciarrubio A., Legaria J., Covarrubias A. // Planta. 1997. V. 203. P. 182–187. https://doi.org/10.1007/s004250050180
  35. Badowiec A., Świgońska S., Szypulska E., Weidner S. // Acta Physiol. Plant. 2012. V. 34. № 6. 2359–2368. https://doi.org/10.1007/s11738-012-1040-9
  36. Гумилевская Н.А., Арабова Л.И., Чумикина Л.В., Шатилов В.Р. // Физиология растений. 1997. Т. 44. № 5. C. 690–698.
  37. Чумикина Л.В., Арабова Л.И., Топунов А.Ф. // Известия вузов. Пищевая технология. 2009. № 2–3. С. 9–12.
  38. Tonini P.P., Purgatto E., Buckeridge M.S. // Ann. Bot. 2010. V. 106. № 4. P. 607–616. https://doi.org/10.1093/aob/mcq159
  39. Обручева Н.В. // Физиология растений. 2012. Т. 59. № 4. С. 591–600.
  40. Cherepneva G.N., Kukina I.M., Kuznetsov V.V., Kulaeva O.N., Mikulovich T.P. // Rus. J. Plant Physiol. 1999. V. 46. № 1. P. 47–56.
  41. Chibani K., Ali-Rachedi S., Job C., Job D., Jullien M. Grappin P. // Plant Physiol. 2006. V. 142. № 4. P. 1493–1510. https://doi.org/10.1104/pp.106.087452
  42. Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. // Seed Sci. Res. 2010. V. 20. P. 55–67. https://doi.org/10.1017/S0960258510000012
  43. Wang Q.-Y., Yang L., Ge N., Jia J.-S., Huang R.-M., Chen C. et al.. // Front. Plant Sci. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1054736
  44. Shu K., Liu X.D., Xie Q., He Z.H. // Mol. Plant. 2016. V. 9. № 1. P. 34–45. https://doi.org/10.1016/j.molp.2015.08.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).