Increased Survival Rate of Probiotic Cultures in the Upper Gastrointestinal Tract during Storage Using a New Biocompatible Gel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Immobilization of lactic acid bacteria (using Enterococcus faecium as an example) in silanol-humate gels (SHG) not only increases the number of viable cells during long-term storage compared to the control (as previously shown), but also enhances their potential probiotic properties. The antagonistic activity against test strains of microorganisms (E. coli, S. aureus, and Y. lipolytica) increases by 0.7–5 times compared to planktonic cultures. The number of E. faecium in SHG under conditions of acid and enzymatic stress, simulating the conditions of the upper parts of the human gastrointestinal tract, is maintained at a level of 30–80% of the initial level, while in the control (unstabilized preparation), almost complete cell death is observed. Technological indicators of fermented milk products obtained using immobilized in SHG E. faecium as starters improve: the time of clot formation is reduced from 48 to 44 hours, the organoleptic assessment increases. The safety of SHG for animals has been demonstrated when ingested at doses not exceeding 5 g/kg/day. SHG can be recommended for use in veterinary medicine and the food industry as a feed additive-adsorbent and stabilizer of probiotic cultures as components of food products.

About the authors

O. A. Galuza

Vinogradsky Institute of Microbiology, Federal Research Center “Fundamental Foundations of Biotechnology” of the Russian Academy of Sciences; LLC BAVAR+

Email: olesya_galuza@mail.ru
Moscow, Russia; Moscow, Russia

A. V. Khramova

Vinogradsky Institute of Microbiology, Federal Research Center “Fundamental Foundations of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

E. K. Polishchuk

Federal State Budgetary Scientific Institution Federal Scientific Center of Food Systems named after V.M. Gorbatov of the Russian Academy of Sciences

Moscow, Russia

G. I. El-Registan

Vinogradsky Institute of Microbiology, Federal Research Center “Fundamental Foundations of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

Yu. A. Nikolaev

Vinogradsky Institute of Microbiology, Federal Research Center “Fundamental Foundations of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

References

  1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. et al. // Nat. Rev. Gastroenterol. Hepatol. 2014. V. 11. P. 506–514. https://doi.org/10.1038/nrgastro.2014.66
  2. Felis G.E., Salvetti E., Torriani S. In: Biotechnology of Lactic Acid Bacteria: Novel Applications. Second Ed. / Eds. F. Mozzi, R.R. Raya, G.M. Vignolo. Wiley Blackwell. 2016. P. 25–30. https://doi.org/10.1007/BF00395928
  3. Hove H., Nørgaard H., Brøbech Mortensen P. // Eur. J. Clin. Nutr. 1999. V. 53. № 5. P. 339–350. https://doi.org/10.1038/sj.ejcn.1600773
  4. Tabasco R., Palencia P., Fontecha J., Peláez C., Requena T. // LWT-Food Science and Technology. 2014. V. 55. № 2. P. 680–684. https://doi.org/10.3390/fishes9080303
  5. Leroy F., De Vuyst L. // Trends Food Sci.Technol. 2004. V. 15. № 2. P. 67–78. https://doi.org/10.1016/j.tifs.2003.09.004
  6. Ng E.W., Yeung M., Tong P.S. // Int. J. Food Microbiol. 2011. V. 145. № 1. P. 169–175. https://doi.org/10.1016/j.ijfoodmicro.2010.12.006
  7. Shin H.J., Lee J., Pestka J., Ustinol Z.P. // J. Food Protect. 2000. V. 63. № 3. P. 327–331. https://doi.org/10.4315/0362-028x-63.3.327
  8. Codex Standard for Fermented Milks. Codex Stan. 243-2003. P. 1–5.
  9. De Vos W.M. // Microbial Cell Factories. 2011. V. 10. Suppl 1. P. S2. https://doi.org/10.1186/1475-2859-10-S1-S2
  10. Ayivi R., Ibrahim S., Gyawali R., Krastanov A., Tahergorabi R., Aljaloud S. et al. // Dairy. 2020. V. 1. № 3. P. 202–232. https://doi.org/10.3390/fermentation9110964
  11. Lahtinen S.J. // Microb. Ecol. Health and Dis. 2012. V. 23. № 1. P. 18567. https://doi.org/10.4236/fns.2018.912099
  12. FAO/WHO. Guidelines for the Evaluation of Probiotics in Food. 2002, P. 1–11. Gould G.W. // Int. J. Food Microbiol.. 1996. V. 33. № 1. P. 51–64. https://doi.org/10.1016/0168-1605(96)01133-6
  13. Gherna R.L., Reddy C.A. // Methods for General and Molecular Microbiology. 2007. P. 1019–1033. https://doi.org/10.1007/978-1-4020-6690-4_48
  14. Vinderola G., Binetti A., Burns P., Reinheimer J. // Frontiers in Microbiology. 2011. V. 2. P. 70. https://doi.org/10.3389/fmicb.2011.00070
  15. Schottroff F., Fröhling A., Zunabovic M., Krottenthaler A., Schlüter O., Jäger H. // Frontiers in Microbiology. 2018. V. 9. P. 2773. https://doi.org/10.3389/fmicb.2018.02773
  16. Memiši N.R., Moracanin V.-M., Škrinjar M.M., Iličić M., Ač M.D. // Acta Periodica Technologica. 2014. № 45. P. 55–66.
  17. Talwalkar A., Kailasapathy K. // Compr. Rev. Food. Sci. Food Safety. 2002. V. 3. № 3. P. 117–124. https://doi.org/10.1111/j.1541-4337.2002.tb00018.x
  18. Borin G.P., de Melo R.R., Crespim E., Sato H.H., Contesini F.J. // Polymer Gels. 2018. P. 1–20. https://doi.org/10.1007/981-106086-1_2
  19. Иммобилизованные клетки: биокатализаторы и процессы. / Pед. Е.Н. Ефременко. М.: РИОР, 2018. 499 с.
  20. Wilkowska A., Kregiel D., Guneser O., Karagul Yuceer Y. // Yeast. 2015. V. 32. P. 217–225. https://doi.org/10.1002/yea.3085
  21. Volikov A., Ponomarenko S., Gutsche A., Nirschl H., Hatfield K., Perminova I. // RSC Advances. 2016. V. 6. P. 48222–48230. https://doi.org/10.1039/c6ra08222a
  22. Патент РФ 2021. № 2757600.
  23. Nikolaev Y., Borzenkov I., Demkina E., Loiko N., Kanapatsky T., Perminova I. et al. // Int. J. Environ. Res. 2021. V. 15. № 6. P. 1–14. https://doi.org/10.3390/ijerph15061192
  24. Galuza O.A., Kovina N.E., Korotkov N.A., Nikolaev Yu.A., El’-Registan G.I. // Microbiology. 2023. V. 92. Suppl. 1. P. S17–S21. https://doi.org/10.1134/S0026261723700219
  25. Zaunmüller T., Eichert M., Richter H., Unden G. // Appl. Microbiol.Biotechnol. 2006. V. 72. P. 421–429. https://doi.org/10.1007/s00253-006-0395-9
  26. Mehmeti I., Solheim M., Nes I.F., Holo H. // Appl. Environ. Microbiol. 2013. V. 79. № 15. P. 4756–4758. https://doi.org/10.1128/AEM.00772-13
  27. Николаев Ю.А., Борзенков И.А., Дёмкина Е.В., Лойко Н.Г., Канапацкий Т.А., Перминова И.В. и др. // Микробиология. 2021. Т. 90. № 6. С. 692‒705. https://doi.org/10.31857/S0026365621060089
  28. Galuza O., El’-Registan G., Vishnyakova A., Nikolaev Yu. // Microbiology. 2025. V. 94. № 1. P. 1–17. https://doi.org/10.1134/S002626172490001X
  29. Galuza O., El’-Registan G., Kashirskaya N., Korotkov N., Nikolaev Yu. // Microbiology. 2024. V. 93. Suppl. 1. P. S11–S116. https://doi.org/10.1134/S0026261724900112
  30. Чернявская Е.Ф., Дутко А.А., Белясова Н.А. // Известия Национальной академии наук Беларуси. Серия биол. наук. 2013. №1. 73–77.
  31. Иркитова А.Н., Каган Я.Р., Соколова Г.Г. // Известия АлтГУ. 2012. № 3–1. С. 41–44.
  32. Hosseini S.V., Arlindo S., Bohme K., Fernandez-No C., Calo-Mata P., BarrosVelazquez J. // J. Appl. Microbiol. 2009. V. 107. P. 1392–1403. https://doi.org/10.1111/j.1365-2672.2009.04205.x
  33. Патент Российская Федерация. 2021. № 2 468 087 C1.
  34. Руководство по проведению доклинических исследований лекарственных средств. Часть I. М.: Гриф и К, 2012. 944 р.
  35. Javed M.A., Masud T., Riaz Q.T.A., Imran M., Maqsood S. // Ann.Microbiol. 2011. V. 61. P. 699–708. https://doi.org/10.1007/s13213-011-0155-9
  36. Zur J., Wojcieszynska D., Guzik U. // Molecules. 2016. V. 21. P. 958–973. https://doi.org/10.3390/molecules21070958
  37. Strompfová V., Lauková A // Anaerobe. 2007. V. 13. № 5–6. P. 228–237. https://doi.org/10.1016/j.anaerobe.2007.03.003
  38. Nikolaev Y.A., Demkina E.V., Ilicheva E.A., Kanapatskiy T.A., Borzenkov I.A., Ivanova A.E. et al. // Microorganisms. 2023. V. 11. № 5. P. 1133. https://doi.org/10.3390/microorganisms11051133
  39. Ramsey M., Hartke A., Huycke M. The Physiology and Metabolism of Enterococci // Eds. M. Gilmore, D.B. Clewell, Y. Ike , N. Shankar Boston: Massachusetts Eye and Ear Infirmary, 2014. P. 1–55.
  40. Gaca A.O., Lemos J.A. // Microbiol. Mol. Biol. Rev. 2019. V. 83. № 3. P. 1–46. https://doi.org/10.1128/MMBR.00001-19
  41. Begley M., Cormac G.M.G., Hill C. // FEMS Microbiol Rev. 2005. V. 29. № 4. P. 625–651. https://doi.org/10.1111/j.1574-6976.2005.tb00236.x
  42. Gunn John S. // Microbes and Infection. 2000. V. 2. № 8. P. 907–913. https://doi.org/10.1016/S1286-4579(00)00335-9
  43. Moser S.A., Savage D.C. // Appl. Environ. Microbiol. 2001. V. 67. P. 3476–3480. https://doi.org/10.1128/AEM.67.7.3476-3480.2001
  44. Taranto M.P., Perez-Martinez G., de Valdez G.F. // Res. Microbiol. 2006. V. 157. P. 720–725. https://doi.org/10.1016/j.resmic.2006.04.008
  45. Galuza O., El’-Registan G., Kanapatskiy T., Nikolaev Y. // Microbiology. 2024. V. 93. № 5. P. 615–628. https://doi.org/10.1134/S0026261724900588
  46. Урбах М.С., Стурова Ю.Г. // Ползуновский вестник. 2024. № 2. С. 172–181.
  47. Swidsinski A., Dörffel Y., Loening-Baucke V., Gille C., Reißhauer A., Göktas O. et al. // World J. Gastroenterol. 2017. V. 23. № 5. Р. 885–890. 10.3748/wjg.V23.i5.885' target='_blank'>https://doi: 10.3748/wjg.V23.i5.885
  48. Yang H.L., Chiu H.C., Lu F. // Am J. Hematol. 1996. V. 51. № 3. P. 200–206.
  49. Islam K.M.S., Schuhmacher A., Gropp J.M. // Pakistan Journal of Nutrition. 2005. V. 4. № 3. P. 126–134. https://doi.org/10.3923/pjn.2005.126-134

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Дегустационный лист (с балльной шкалой) оценки кисломолочного продукта, приготовленного на основе клеток МКБ, иммобилизованных в СГГ
Download (513KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).