Optimization of RNA Structure Enhances Biosynthesis of L-Asparaginase from E. coli During Gene Overexpression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A highly efficient expression system for recombinant type II L-asparaginase from Escherichia coli (EC 3.5.1.1) was developed using a synthetic gene optimized for the folding energy of mRNA secondary structures in the 5'-region. The engineered E. coli BL21[DE3]/pET28a-AsnSYN strain produced up to 291 ± 9 mg/L of enzymatically active protein (44.5 ± 2.6 mg/(L·OD)) in shake-flask cultures, 50% higher than the control strain with the native gene after 3 hours of induction. Codon optimization increased the mRNA secondary structure stability in the 5'-region from –70 to –47 kcal/mol, potentially improving translation efficiency. The purified asparaginase met pharmacopeial standards, with a total yield ≥25%, specific activity >250 IU/mg, and high purity (no detectable impurities by electrophoresis, <3% multimeric forms by gel filtration). These findings highlight the potential of synthetic gene design with DNA structure optimization for industrial-scale production of therapeutic enzymes.

About the authors

R. R. Shaifutdinov

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

N. A. Orlova

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

I. I. Vorobyev

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: ptichman@gmail.com
Moscow, Russia

References

  1. Beard M.E., Crowther D., Galton D.A., Guyer R.J., Fairley G.H., Kay H.E. et al. // Br. Med. J. 1970, V. 1. P. 191–195. https://doi.org/10.1136/bmj.1.5690.191
  2. Lubkowski J., Wlodawer A. // FEBS J. 2021. V. 288. P. 4183–4209. https://doi.org/10.1111/febs.16042
  3. Sidhu J., Gogoi M.P., Agarwal P., Mukherjee T., Saha D., Bose P. et al. // Pediatr. Blood Cancer. 2021. V. 68. P. e29046. https://doi.org/10.1002/pbc.29046
  4. Hinojosa-Amaya J.M., Cuevas-Ramos D., Fleseriu M. // Drugs. 2019. V. 79. P. 935–956. https://doi.org/10.1007/s40265-019-01128-7
  5. Borisova A.A., El’darov M.A., Zhgun A.A., Aleksandrova S.S., Omel’ianiuk N.M., Sokov B.N. et al. // Biomed. Khim. 2003. V. 49. P. 502–507.
  6. Asselin B.L. // Adv. Exp. Med. Biol. 1999. V. 457. P. 621–629.
  7. Chan W.K., Horvath T.D., Tan L., Link T., Harutyunyan K.G., Pontikos M.A. et al. // Mol. Cancer Ther. 2019. V. 18. P. 1587–1592. https://doi.org/10.1158/1535-7163.MCT-18-1329
  8. Burke M.J., Zalewska-Szewczyk B. // Future Oncol. 2022. V. 18. P. 1285–1299. https://doi.org/10.2217/fon-2021-1288
  9. Panosyan E.H., Seibel N.L., Martin-Aragon S., Gaynon P.S., Avramis I.A., Sather H. et al. // J. Pediatr. Hematol. Oncol. 2004. V. 26. P. 217–226. https://doi.org/10.1097/00043426-200404000-00002
  10. Wang Y., Xu W., Wu H., Zhang W., Guang C., Mu W. // Int. J. Biol. Macromol. 2021. V. 186. P. 975–983. https://doi.org/10.1016/j.ijbiomac.2021.07.107
  11. de Araujo T.S., da Costa A.C., Dias Leite da Silva C., Ribeiro F.S., de Andrade R.A., Paula Neto H.A. et al. // Biochemistry. 2025. https://doi.org/10.1021/acs.biochem.4c00663
  12. Khushoo A., Pal Y., Singh B.N., Mukherjee K.J. // Protein Expr. Purif. 2004. V. 38. P. 29–36. https://doi.org/10.1016/j.pep.2004.07.009
  13. Naderi M., Ghaderi R., Khezri J., Karkhane A., Bambai B. // Biochem. Biophys. Res. Commun. 2022. V. 636. P. 105–111. https://doi.org/10.1016/j.bbrc.2022.10.029
  14. Behloul N., Wei W., Baha S., Liu Z., Wen J., Meng J. // Microb. Cell Fact. 2017. V. 16. P. 200. https://doi.org/10.1186/s12934-017-0812-8
  15. Zhang W., Xiao W., Wei H., Zhang J., Tian Z. // Biochem. Biophys. Res. Commun. 2006. V. 349. P. 69–78. https://doi.org/10.1016/j.bbrc.2006.07.209
  16. Khodak Y.A., Ryazanova A.Y., Vorobiev I.I., Kovalchuk A.L., Ovechko N.N., Aparin P.G. // BioTech (Basel). 2023. V. 12. https://doi.org/10.3390/biotech12010009
  17. Mashburn L.T., Wriston J.C., Jr. // Arch. Biochem. Biophys. 1964. V. 105. P. 450–452. https://doi.org/10.1016/0003-9861(64)90032-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).