Modern Methods of Inorganic Polyphosphate Analysis in Biological Samples (Review)
- Authors: Trilisenko L.V.1, Kulakovskaya T.V.1
-
Affiliations:
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms
- Issue: Vol 61, No 6 (2025)
- Pages: 531–546
- Section: Articles
- URL: https://journals.rcsi.science/0555-1099/article/view/380333
- DOI: https://doi.org/10.7868/S3034574X25060011
- ID: 380333
Cite item
Abstract
Inorganic polyphosphates (polyP) are universal regulatory compounds and participate in the control of gene expression, stress adaptation, membrane transport, and cell motility. They plays important role in bone tissue development, thrombosis and inflammation processes, signal transmission in nerve cells, and amyloid formation. These polymers are participate in phosphorus homeostasis both in living cells and natural and technogenic ecosystems. PolyP are used as fertilizers, food additives, and water treatment compound and flame retardant. Modern highly sensitive and specific methods for polyP analysis are necessary for solving fundamental problems of biochemical process regulation and for a number of practical tasks, such as monitoring the state of environmental objects, food quality, and developing new methods for treating bone diseases, the cardiovascular system, and neurodegenerative pathologies. Currently, efficient and highly specific methods for polyP assay have been developed, such as special extraction methods, enzymatic analysis, electrophoresis, DAPI staining, and microscopic methods, including micro-X-ray analysis. NMR retains its importance, especially for determining the polymer chain length. In this review, we consider polyP analysis methods from the point of view of problems solved in the study of various biological objects, with special attention to the most modern and widespread approaches.
About the authors
L. V. Trilisenko
Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of MicroorganismsPushchino, Russia
T. V. Kulakovskaya
Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms
Email: alla@ibpm.ru
Pushchino, Russia
References
- Harold F.M. // Bacteriol. Rev. 1966. V. 30. № 4. P. 772–794. https://doi.org/10.1128/br.30.4.772-794.1966
- Kornberg A. // J. Bacteriol. 1995. V. 177. P. 491–496.
- Кулаев И.С. // Биохимия неорганических полифосфатов. 1975. М: Изд. МГУ. 246 c.
- Kornberg A., Rao N.N., Ault-Riché D. // Ann. Rev. Biochem. 1999. V. 68. P. 89–125.
- Kulaev I., Vagabov V., Kulakovskaya T. // J. Biosci. Bioeng. 1999. V. 88. P. 111–129.
- Rao N.N., Gómez-García M.R., Kornberg A. // Ann. Rev. Biochem. 2009. V. 78. P. 605–647.
- Albi T., Serrano A. // World J. Microbiol. Biotechnol. 2016. V. 2. Art. 27 https://doi.org/10.1007/s11274-015-1983-2
- Clotet J. // Curr. Genet. 2017. V. 63. P. 15–18.
- Omelon S., Georgiou J., Henneman Z.J., Wise L.M., Sukhu B., Hant T., Wynnyckyj S., Holmyard D., Bielecki R., Grynpas M.D. // PLoS ONE. 2009. V. 4. № 5. Art. e5634.
- Müller W.E., Wang X., Schröder H.C. // Prog. Mol. Subcell. Biol. 2017. V. 55. P. 187–219.
- Baker C.J., M.S, Smith S.A., Morrissey J.H. // Research and Practice in Thrombosis and Haemostasis. 2019. V. 3. P. 18–25.
- Huang W.C., Mailer R.K., Renné T. // Curr. Opin. Hematol. 2023. V. 30. № 5. P. 159–166. https://doi.org/10.1097/MOH.0000000000000771
- Seidlmayer L.K., Juettner V.V., Kettlewell S., Pavlov E.V., Blatter L.A., Dedkova E.N. // Cardiovascular Research. 2015. V. 106. P. 237–248.
- Baev A.Y., Negoda A., Abramov A.Y. // J. Bioenerg. Biomembr. 2017. V. 49. P. 49–55.
- Angelova P.R., Iversen K.Z., Teschemacher A.G., Kasparov S., Gourine A.V., Abramov A.Y. // Glia. 2018. V. 66. P. 2126–2136.
- Xie L.; Jakob U. // J. Biol. Chem. 2019. V. 294. № 6. P. 2180–2190.
- Yamaguchi K., Nakajima K., Goto Y. // Biophysics and Physicobiology. 2023. V. 20. Art. e200013. https://doi.org/10.2142/biophysico.bppb-v20.0013
- Guan J., Jakob U. // J. Mol. Biol. 2024. Art. 168504. https://doi.org/10.1016/j.jmb.2024.168504
- Garcés P., Amaro A., Montecino M. // Review Biochem. Soc. Trans. 2024. V. 52 № 1. P. 123–135. https://doi.org/10.1042/BST20230257
- Fujiya M., Ueno N., Kashima S., Tanaka K., Sakatani A., Ando K., Moriichi K., Konishi H., Kamiyama N., Tasaki Y., Omura .T, Matsubara K., Taruishi M., Okumura T. // Clin. Pharmacol. Ther. 2020. V. 107. № 2. P. 452–461. https://doi.org/10.1002/cpt.1628
- Borghi F., Saiardi A. // Biochem. Soc. Trans. 2023. V. 51. № 5. P.1947–1956. https://doi.org/10.1042/BST20230483
- Diaz J., Ingall E., Benitez-Nelson C., Paterson D., de Jonge M.D., McNulty I., Brandes J.A. // Science. 2008. V. 320. P. 652–655.
- Diaz J.M., Steffen R., Sanders J.G., Tang Y. // Environ. Microbiol. 2019. V. 21 № 7. P. 2415–2425. https://doi.org/10.1111/1462-2920.14630
- Zhang C., Guisasola A., Baeza J.A. // Water Research. 2022. V. 212. Art. 118102. https://doi.org/10.1016/j.watres.2022.118102
- Дорофеев А.Г., Николаев Ю.А., Марданов А.В., Пименов Н.В. // Прикладная биохимия и микробиология. 2020. T. 56. № 1. С. 3–18.
- Hata Y., Hiruma S., Miyazaki H., Nakamura S. // ACS Omega. 2024. V. 9. № 11. P. 12635–12642. https://doi.org/10.1021/acsomega.3c07627
- Wang X., Gao Y., Chu G. // ACS Omega. 2021. V. 6. № 29. P. 18811–18822. https://doi.org/10.1021/acsomega.1c01999
- Zirnstein B., Schulze D., Schartel B. // Materials (Basel). 2019. V. 12. № 12. Art.pii: E1932. https://doi.org/10.3390/ma12121932
- Berardi G., Di Taranto A., Haouet N., Vita V., Palomba E., Rizzi G., Iammarino M. // Ital. J. Food Saf. 2023. V. 12. № 4. Art. 11110. https://doi.org/10.4081/ijfs.2023.11110
- Malik A., Khan J.M., Al-Amri A.M., Altwaijry N., Sharma P., Alhomida A., Sen P. // ACS Omega. 2023. V. 8 № 46. P. 44086–44092. https://doi.org/10.1021/acsomega.3c06210
- Müller W.E.G., Neufurth M., Wang S., Schröder H.C., Wang X. // Int. J. Nanomedicine. 2024. V. 19. P. 1303–1337. https://doi.org/10.2147/IJN.S446405
- Wang X., Schröder H.C., Müller W.E.G. // J. Mater. Chem. B. 2018. V. 6. № 16. P. 2385–2412. https://doi.org/10.1039/c8tb00241j
- Sugai R., Kobayashi M., Niizuma Y., Mizukami H., Koyasu M., Shiba T., Kitahara N., Manabe A // J. Esthet. Restor. Dent. 2024. V. 36 № 3. P. 484–493. https://doi.org/10.1111/jerd.13163
- Müller W.E.G., Neufurth M., Wang S., Schröder H.C., Wang X. // Small. 2024. Art. e2309528. https://doi.org/10.1002/smll.202309528
- Summonte S., Sanchez Armengol E., Ricci F., Sandmeier M., Hock N., Güclü-Tuncyüz A., Bernkop-Schnürch A. // Int. J. Pharm. 2024. V. 654. Art. 123983. https://doi.org/10.1016/j.ijpharm.2024.123983
- Tarayre C., Nguyen H.T., Brognaux A., Delepierre A., De Clercq L., Charlier R., Michels E., Meers E., Delvigne F. // Sensors (Basel). 2016. V. 16. № 6. Art. 797. https://doi.org/10.3390/s16060797
- Bru S., Jiménez J., Canadell D., Ariño J., Clotet J. // Microb. Cell. 2017. V. 2. № 4(1). P. 6–15. 10.15698/mic2017.01.551' target='_blank'>https://doi: 10.15698/mic2017.01.551
- Christ J.J., Willbold S., Blank L.M. // Anal. Chem. 2020.V. 92. № 6. P. 4167–4176.
- Kullik G.A., Waldmann M., Renné T. // Curr. Opin. Biotechnol. 2024. V. 90. Art. 103208. https://doi.org/10.1016/j.copbio.2024.103208
- Кулаев И.С., Вагабов В.М., Кулаковская Т.В. // Высокомолекулярные неорганические полифосфаты: биохимия, клеточная биология, биотехнология. М.: Изд. Научный мир, 2005. 215 с.
- Christ J.J., Blank L.M. // Anal. Biochem. 2018. V. 563. P. 71–78.
- Borghi F., Azevedo C., Johnson E., Burden J.J., Saiardi A. // Cell Rep. Methods. 2024. V. 4. № 7. Art. 100814. https://doi.org/10.1016/j.crmeth.2024.100814
- Clark J.E., Beegen H., Wood H.D. // J. Bacteriol. 1986. V. 168. P. 1212–1219.
- Langen P., Liss E. Naturwissenschaften. 1959. V. 46. P. 151–152.
- Вагабов В.М., Трилисенко Л.В., Щипанова И.Н., Сибельдина Л.А., Кулаев И.С. // Микробиология. 1998. T. 67. № 3. С. 193–198.
- Калебина Т.С.,. Кулаковская Е.В, Рекстина В.B., Трилисенко Л.В., Зиганшин Р.Х., Мармий Н.В., Есипов Д.С., Кулаковская Т.В. // Биохимия. 2023. Т. 88. № 1. С. 125–135.
- Wilson M.S.C., Bulley S.J., Pisani F., Irvine R.F., Saiardi A. // Open Biol. 2015. V. 5. Art. 150014. https://doi.org/10.1098/rsob.150014
- Werner T.P., Amrhein A.E.N., Freimoser F.M. // Arch. Microbiol. 2005.V. 184. P. 129–136. https://doi.org/ 10.1007/s00203-005-0031-2
- Несмеянова М.А., Дмитриев А., Кулаев И.С. // Микробиология. 1973. Т. 42. С. 213–219.
- Smirnov A., Suzina N., Chudinova N., Kulakovskaya T., Kulaev I. // FEMS Microbiol. Ecol. 2005. V. 52. № 1. P. 129–137. https://doi.org/10.1016/j.femsec.2004.10.012
- Christ J.J., Blank L.M. // Anal. Biochem. 2018. V. 548. P. 82–90.
- Эльдаров М.А., Баранов М.В., Думина М.В, Жгун А.А., Андреева Н.А., Трилисенко Л.В., Кулаковская Т.В., Рязанова Л.П., Кулаев И.С. // Биохимия. 2013. Т. 78. № 8. С. 1201–1209.
- Ledova L.A., Ryazanova L.P., Kulakovskaya T.V. // Microbiology. 2024. V. 93. P. 610–614.
- Ault-Riché D., Fraley C.D., Tzeng C.-M., Kornberg A. // J. Bacteriol. 1998. V. 180. № 7. P. 1841–1847.
- Tomashevsky A., Kulakovskaya E., Trilisenko L., Kulakovskiy I., Kulakovskaya T., Fedorov A., Eldarov M. // Biology. 2021. V. 10. Art. 487. https://doi.org/10.3390/biology10060487
- Labberton L., Kenne E., Long A.T., Nickel K.F., Di Gennaro A., Rigg R.A., Hernandez J.S., Butler L., Maas C., Stavrou E.X. // Nat. Commun. 2016. V. 7. Art. 12616.
- Кулаев И.С., Крашенинников И.А., Кокурина И.А. // Биохимия. 1966. Т. 31. С. 850–858.
- Vagabov V.M., Trilisenko L.V., Kulakovskaya T.V., Kulaev I.S. // FEMS Yeast Res. 2008. V. 8. P. 877–882.
- Вагабов В.М., Трилисенко Л.В., Кулаев И.С. // Биохимия. 2000. Т. 65. № 3. С. 414–420.
- Вагабов В.М., Трилисенко Л.В., Кулаковская Т.В., Кулаев И.С. // Микробиология. 2008. Т. 77. № 5. С. 611–616.
- Andreeva N., Ryazanova L., Dmitriev V., Kulakovskaya T., Kulaev I. // FEMS Yeast Res. 2013. V. 13. P. 463–470.
- Трилисенко Л.В., Ледова Л.А., Рязанова Л.П., Кулаковская Е.В., Томашевский А.А., Кулаковская Т.В. // Biologia et Biotechnologia. 2024. V. 1. Art. 4. https://doi.org/10.61847/pbcras.bbt.2024.1.4
- Eixler S., Selig U.,Karsten U. // Hydrobiologia. 2005. V. 533. P. 135–143. https://doi.org/10.1007/s10750-004-2406-9
- Thilo E., Wieker W. // Z. Anorg. Allg. Chem. 1957. V. 291. P. 164–1854.
- Ebel J.P., Colas J., Muller S. // Exp. Cell. Res. 1958. V. 15. P. 36–42.
- Baluyot E.S., Hartford C.G. // J. Chromatography A. 1996. V. 739. P. 217–222.
- Andreeva N.A., Okorokov L.A. // Yeast. 1993. V. 9. P. 127–139.
- Kumble K.D., Kornberg A. // J. Biol. Chem. 1995. V. 270. № 11. P. 5818–5822.
- Bock R.M. // Controlled partial hydrolysis of RNA. Methods in Enzymology. 1967. V. 12. Part A. P. 218–221.
- Чернышева Е.К., Крицкий М.С., Кулаев И.С. // Биохимия. 1971. T. 36. № 1. С. 138–142.
- Segawa S., Fujiya M., Konishi H., Ueno N., Kobayashi N., Shigyo T., Kohgo Y. // PLoS One. 2011. V. 6. № 8. Art. e23278. https://doi.org/10.1371/journal.pone.0023278
- Anand A., Aoyagi H. // Sci Rep. 2019. V. 9. Art. 4879. https://doi.org/10.1038/s41598-018-37752-8
- Corbridge D.E.C. // Phosphorus. An Outline of its Chemistry, Biochemistry and Technology (Second edition) Elsevier Sci. Pub. Comp. Amsterdam-Oxford-New York. 1980.
- Соколов И.А., Мурин И.В., Крийт В.Е., Горяинова А.Я., Пронкин А.А. // Вестник Санкт-Петербургского Университета. 2012. Сер. 4. Вып. 4. С. 54–74.
- Robinson T.E., Arkinstall L.A., Cox S.C., Grover L.M. // Comments on Inorganic Chemistry. 2022. V. 42. № 1. P. 47–59. https://doi.org/10.1080/02603594.2021.1973444
- Becke-Goehring M. // Phosphorus and its Compounds, Bd. 1: Chemistry, first ed., Wiley-VCH, Weinheim, Germany, 1961.
- Ruiz F.A., Rodrogues C.O., Docampo R. // J. Biol. Chem. 2001. V. 276. P. 26114–26121.
- Ohtomo R., Sekiguchi Y., Kojima T., Saito M. // Anal. Biochem. 2008. V. 383. P. 210–216. https://doi.org/10.1016/j.ab.2008.08.002
- Heinonen Y.K., Lahti R.Y. // Anal. Biochem. 1981. V. 113. P.313–317.
- Kulakovskaya T.V., Andreeva N.A., Karpov A., Sidorov I., Kulaev I.S. // Biochemistry (Moscow) 1999. V. 64. P. 990–993.
- Van Veldhoven P.P., Mannaerts G.P. // Anal. Biochem. 1987. V. 161. P. 45–48.
- Andreeva N., Ledova L., Ryazanova L., Tomashevsky A., Kulakovskaya T., Eldarov M. // Biochimie. 2019. V. 163. P. 101–107. https://doi.org/10.1016/j.biochi.2019.06.001
- Lichko L. Kulakovskaya T. // Adv. Enzym. Res. 2015. V. 3. P. 93–100. https://doi.org/10.4236/aer.2015.34010
- Christ J.J, Willbold S., Blank L.M. // Anal. Chem. 2019. V. 91. № 12. P. 7654–7661.
- Christ J.J. // Aminoverse. 2023. Homepage for the Phosfinity ChainQuant Assay hips://www.aminoverse.com/enzyme-products/phosfinity-chainquant/.
- Smith S.A., Morrissey J.H. // Electrophoresis 2007. V. 28. № 19. P. 3461–3465. https://doi.org/10.1002/elps.200700041
- Manoukian L., Stein R.S., Correa J.A., Frigon D., Omelon S. // Electrophoresis. 2023. V. 44. P. 1197–1205. https://doi.org/10.1002/elps.202300055
- Smith S.A., Yan Wang, Morrissey J.H. // Electrophoresis. 2018. V. 39. № 19. P. 2454–2459. https://doi.org/10.1002/elps.201800227
- Glohek T., Lunde M., Mudget M., Myers T.C. // Arch. Biochem. Biophys. 1971. V. 142. P. 508–513.
- Ugurbil L., Rottenberg H., Glynn R., Schulman G. // Proc. Natl. Acad. Sci. USA. 1978. V. 75. P. 2224–2228.
- Островский Д.Н., Сепетов Н.Ф., Решетняк В.И., Сибельдина Л.А. // Биохимия. 1980. Т. 45. С. 517–525.
- Lambert C., Weuster-Botz D., Weichenhain R., Kreutz E.W., de Graaf A.A., Schoberth S.M. // Acta Biotechnol. 2002. V. 22. P. 245–260.
- Mandala V.S., Loh D.M., Shepard S.M., Geeson M.B., Sergeyev I.V., Nocera D.G. Cummins C.C., Hong M. // J. Am. Chem. Soc. 2020. V. 142. № 43. P. 18407–18421. https://doi.org/10.1021/jacs.0c06335
- Pilatus U., Mayer, Hildebrandt. // Arch. Biochem. Biophys. 1989. V. 275. P. 215–223.
- Крупянко В.И., Вагабов В.М., Трилисенко Л.В., Крупянко П.В., Щипанова И.Н., Сибельдина Л.А., Кулаев И.С. // Прикл. биохим. микробиол. 1998. Т. 34. С. 430–434.
- Chen K.Y. // Prog. Mol. Subcell. Biol. 1999. V. 23. P. 253–273. https://doi.org/10.1007/978-3-642-58444-2_13
- Loureiro-Dias M.C., Santos H. // Arch. Microbiol. 1990. V. 153. P. 384–391.
- Pereira H., Lemos P.C., Carrondo M.J.T., Crespo J.P.S., Peis M.A.M., Santos H. // Water Res. 1996. V. 30. P. 2128–2138.
- Wang L., Kuchendorf C., Willbold S. // Algal Res. 2019. V. 43. Art. 101631. https://doi.org/10.1016/j.algal.2019.101631
- Viéville J., Tanty M., Delsuc M.-A. //. J. Magn. Reson. 2011. V. 212. P. 169–173.
- Lyratzakis A., Kalogerakis M., Polymerou K., Spyros A., Tsiotis G. // Biochim. Biophys. Acta. Gen. Subj. 2024. V. 1868. № 12. Art. 130718. https://doi.org/10.1016/j.bbagen.2024.130718
- Kooij J., Yang P.T., Bruun S., Magid J., Gro Nielsen U., Theil Kuhn L., Müller-Stöver D. // J. Environ. Manage. 2024. V. 370. Art. 122565. https://doi.org/10.1016/j.jenvman.2024.122565
- Bahgat N.T., Wilfert P., Eustace S.J., Korving L., van Loosdrecht M.C.M. 2024. V. 262. P. 122077. https://doi.org/10.1016/j.watres.2024
- Duersch B.G., Luo Y., Chen S., Soini S.A., Raja Somu D.M., Merk V.M. // Environ. Pollut. 2023. V. 334. Art. 121781. https://doi.org/10.1016/j.envpol.2023.121781
- Petriglieri F., Petersen J.F., Peces M., Nierychlo M., Hansen K., Baastrand C.E., Nielsen U.G., Reitzel K., Nielsen P.H. // Environ. Sci. Technol. 2022. V. 56. № 8. P. 5132–5140. https://doi.org/10.1021/acs.est.1c02642
- Lázaro B., Sarrias A., Tadeo F.J., Marc Martínez-Láinez J., Fernández A., Quandt E., Depares B., Dürr-Mayer T., Jessen H., Jiménez J., Clotet J., Bru S. // Methods. 2025. V. 234. P. 211–222. https://doi.org/10.1016/j.ymeth.2025.01.001
- Voříšek J., Knotková A., Kotyk A. // Zbl. Mikrobiol. 1982. V. 137. P. 421–432.
- Jensen T.E. // Arch. Microbiol. 1968. V. 62. P. 144–152.
- Schonborn C., Bauer H.D., Roske L. // Water. Res. 2001. V. 35. P. 3190-3196.
- Ward S.K., Heintz J.A., Albrecht R.M., Talaat A.M. // Front. Cell. Infect. Microbiol. 2012. V. 2. Art. 63. https://doi.org/10.3389/fcimb.2012.00063
- Tocheva E.I., Dekas A.E., McGlynn S.E., Morris D., Orphan V.J., Jensen G.J. // J Bacteriol. 2013. V. 195. № 17. P. 3940–3946. https://doi.org/10.1128/JB.00712-13
- Racki L.R., Tocheva E.I., Dieterle M.G., Sullivan M.C., Jensen G.J., Newman D.K. // Proc. Natl. Acad. Sci. U S A. 2017. V. 114. № 12. E2440–E2449. https://doi.org/10.1073/pnas.1615575114
- Janet-Maitre M., Pont S., Masson F.M., Sleiman S., Trouillon J., Robert-Genthon M. et al. // PLoS Pathog. 2023. V. 19. № 1. Art. e1011023. https://doi.org/10.1371/journal.ppat.1011023
- Ashford A.E., Ling-Lee M., Chilvers G.A. // New. Phytol. 1975. V. 74. P. 477–453.
- Orlovich D.A., Ashford A.E. // Protoplasma. 1993. V. 173. P. 91–102.
- Bucking H., Beckmann S., Heyser W., Kottke I. // Micron. 1998. V. 29. P. 53–61.
- Sanz-Luque E., Bhaya D., Grossman A.R. // Front. Plant. Sci. 2020. V. 11. P. 938. https://doi.org/10.3389/fpls.2020.00938
- Docampo R. // Microbiol. Mol. Biol. Rev. 2024. V. 88. № 1. Art. e0004223. https://doi.org/10.1128/mmbr.00042-23
- Wang X., Ackermann M., Tolba E., Neufurth M., Wurm F., Feng Q. et al. // Eur. Cell Mater. 2016. V. 32. P. 271–283. https://doi.org/10.22203/eCM.v032a18
- Hensgens C.M., Santos H., Zhang C., Kruizinga W.H., Hansen T.A. // Eur. J. Biochem. 1996. V. 242. P. 327–331.
- Majed N., Matthäus C., Diem M., Gu A.Z. // Environ. Sci. Technol. 2009. V. 43. № 14. P. 5436–5442. https://doi.org/10.1021/es900251n
- Moudříková Š., Ivanov I.N., Vítová M., Nedbal L., Zachleder V., Mojzeš P., Bišová K. // Cells. 2021. V. 10. Art. 62. https://doi.org/10.3390/cells10010062
- Allan R.A., Miller J.J. // Can. J. Microbiol. 1980. V. 26. P. 912–920.
- Tijssen J.P.F., Beekes H.W., Van Steveninck J. // Biochem. Biophys. Acta. 1982. V. 721 P. 394–398.
- Streichan M., Golecki J.R., Schon G. // FEMS Microbiol. Ecol. 1990. V. 73. P. 113–124.
- Kulakova A.N., Hobbs D., Smithen M., Pavlov E., Gilbert J.A., Quinn J.P., McGrath J.W. // Environ. Sci. Technol. 2011. V. 45. № 18. P. 7799–7803. https://doi.org/10.1021/es201123r
- Frank C., Pfeiffer D., Aktas M., Jendrossek D. // Microb. Physiol. 2022. V. 32. № 3–4. P. 71–82. https://doi.org/10.1159/000521970
- Puchkov E.O. // Yeast. 2010. V. 27. № 6. P. 309–315. https://doi.org/10.1002/yea.1754
- Gomes F.M., Ramos I.B., Wendt C., Girard-Dias W., De Souza W., Machado E.A., Miranda K. // Eur. J. Histochem. 2013. V. 57. № 4. Art. e34. https://doi.org/10.4081/ejh.2013.e34
- Aschar-Sobbi R., Abramov A.Y., Diao C., Kargacin M.E., Kargacin G.J., French R.J., Pavlov E. // J. Fluoresc. 2008. V. 18. № 5. P. 859–866. https://doi.org/10.1007/s10895-008-0315-4
- Serafim L.S., Lemos O.C., Levantesi C., Tandoi V., Santos H., Reis M.A. // J. Microbiol. Methods. 2002. V. 51. P. 1–18.
- Liu W.T., Nielsen A.T., Wu J.H., Tsai C.S., Matsuo Y., Molin S. // Environ. Microbiol. 2001. V. 3. № 2. P. 110–122. https://doi.org/10.1046/j.1462-2920.2001.00164.x
- Martin P., Van Mooy B.A. // Appl. Environ. Microbiol. 2013. V. 79. № 1. P. 273–281. https://doi.org/10.1128/AEM.02592-12
- Terashima M., Kamagata Y., Kato S. // Front. Microbiol. 2020. V. 11. Art. 793. https://doi.org/10.3389/fmicb.2020.00793
- Diaz J.M., Ingall E.D. // Environ. Sci. Technol. 2010. V. 44. P. 4665–4671. https://doi.org/10.1021/es100191h
- Tanious F.A., Veal J.M., Buczak H., Ratmeyer L.S., Wilson W.D. // Biochemistry. 1992. V. 31. P. 3103–3112.
- Sato A., Aizawa H., Tsujino T., Isobe K., Watanabe T., Kitamura Y., Kawase T. // Int. J. Mol. Sci. 2021. V. 22. № 3. Art. 1040. https://doi.org/10.3390/ijms22031040
- Kawase T., Suzuki K., Kamimura M., Mochizuki T., Ushiki T. // Meth. Protoc. 2023. V. 6. № 4. Art. 59. https://doi.org/10.3390/mps6040059.
- Pavlov E., Aschar-Sobbi R., Campanella M., Turner R.J., Gómez-García M.R., Abramov A.Y. // J. Biol. Chem. 2010. V. 285. № 13. P. 9420–9428. https://doi.org/10.1074/jbc.M109.013011
- Baev A.Y., Angelova P.R., Abramov A.Y. // Biochem. J. 2020. V. 477. № 8. P. 1515–1524. https://doi.org/10.1042/BCJ20200042
- Günth S., Trutnau M., Kleinsteuber S., Hause G., Bley T., Röske I., Harms H., Müller S. // Appl. Environ. Microbiol. 2009. V. 75. P. 2111–2121.
- Angelova P.R., Agrawalla B.K., Elustondo P.A., Gordon J., Shiba T., Abramov A.Y., Chang Y.T., Pavlov E.V. // ACS Chem. Biol. 2014. V. 9. № 9. P. 2101–10. https://doi.org/10.1021/cb5000696
- Yang X., Gao R., Zhang Q., Yung C.C.M., Yin H., Li J. // Environ. Sci. Technol. 2024. V. 58 № 32. P. 14249–14259. https://doi.org/10.1021/acs.est.4c04545
- Deitert A., Fees J., Mertens A., Nguyen Van D., Maares M., Haase H., Blank L.M., Keil C. Yeast. 2024. V. 41. № 10. P. 593–604. https://doi.org/10.1002/yea.3979
- Grossgebauer K. // Microsc. Acta. 1980. V. 83. № 1. P. 49–54.
- Kolozsvari B., Parisi F., Saiardi A. // Biochem. J. 2014. V. 460. № 3. P. 377–385. https://doi.org/10.1042/BJ20140237
- Omelon S., Georgiou J., Habraken W. // Biochem. Soc. Trans. 2016. V. 44. № 1. P. 46–49. https://doi.org/10.1042/BST20150231
- Lee A., Whitesides G.M. // Anal. Chem. 2010. V. 82. № 16. P. 6838–6846. https://doi.org/10.1021/ac1008018
- Choi B.K., Hercules D.M., Houalla M. // Anal. Chem. 2000. V. 72. № 20. P. 5087–5091. https://doi.org/10.1021/ac000044q
- Jiménez J., Lázaro B., Sarrias A., Tadeo F.J., Pérez-Montero M., Clotet J., Bru S. // STAR Protoc. 2022. V. 3 № 2. Art. 101363. https://doi.org/10.1016/j.xpro.2022.101363
Supplementary files

