Modern Methods of Inorganic Polyphosphate Analysis in Biological Samples (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Inorganic polyphosphates (polyP) are universal regulatory compounds and participate in the control of gene expression, stress adaptation, membrane transport, and cell motility. They plays important role in bone tissue development, thrombosis and inflammation processes, signal transmission in nerve cells, and amyloid formation. These polymers are participate in phosphorus homeostasis both in living cells and natural and technogenic ecosystems. PolyP are used as fertilizers, food additives, and water treatment compound and flame retardant. Modern highly sensitive and specific methods for polyP analysis are necessary for solving fundamental problems of biochemical process regulation and for a number of practical tasks, such as monitoring the state of environmental objects, food quality, and developing new methods for treating bone diseases, the cardiovascular system, and neurodegenerative pathologies. Currently, efficient and highly specific methods for polyP assay have been developed, such as special extraction methods, enzymatic analysis, electrophoresis, DAPI staining, and microscopic methods, including micro-X-ray analysis. NMR retains its importance, especially for determining the polymer chain length. In this review, we consider polyP analysis methods from the point of view of problems solved in the study of various biological objects, with special attention to the most modern and widespread approaches.

About the authors

L. V. Trilisenko

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms

Pushchino, Russia

T. V. Kulakovskaya

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms

Email: alla@ibpm.ru
Pushchino, Russia

References

  1. Harold F.M. // Bacteriol. Rev. 1966. V. 30. № 4. P. 772–794. https://doi.org/10.1128/br.30.4.772-794.1966
  2. Kornberg A. // J. Bacteriol. 1995. V. 177. P. 491–496.
  3. Кулаев И.С. // Биохимия неорганических полифосфатов. 1975. М: Изд. МГУ. 246 c.
  4. Kornberg A., Rao N.N., Ault-Riché D. // Ann. Rev. Biochem. 1999. V. 68. P. 89–125.
  5. Kulaev I., Vagabov V., Kulakovskaya T. // J. Biosci. Bioeng. 1999. V. 88. P. 111–129.
  6. Rao N.N., Gómez-García M.R., Kornberg A. // Ann. Rev. Biochem. 2009. V. 78. P. 605–647.
  7. Albi T., Serrano A. // World J. Microbiol. Biotechnol. 2016. V. 2. Art. 27 https://doi.org/10.1007/s11274-015-1983-2
  8. Clotet J. // Curr. Genet. 2017. V. 63. P. 15–18.
  9. Omelon S., Georgiou J., Henneman Z.J., Wise L.M., Sukhu B., Hant T., Wynnyckyj S., Holmyard D., Bielecki R., Grynpas M.D. // PLoS ONE. 2009. V. 4. № 5. Art. e5634.
  10. Müller W.E., Wang X., Schröder H.C. // Prog. Mol. Subcell. Biol. 2017. V. 55. P. 187–219.
  11. Baker C.J., M.S, Smith S.A., Morrissey J.H. // Research and Practice in Thrombosis and Haemostasis. 2019. V. 3. P. 18–25.
  12. Huang W.C., Mailer R.K., Renné T. // Curr. Opin. Hematol. 2023. V. 30. № 5. P. 159–166. https://doi.org/10.1097/MOH.0000000000000771
  13. Seidlmayer L.K., Juettner V.V., Kettlewell S., Pavlov E.V., Blatter L.A., Dedkova E.N. // Cardiovascular Research. 2015. V. 106. P. 237–248.
  14. Baev A.Y., Negoda A., Abramov A.Y. // J. Bioenerg. Biomembr. 2017. V. 49. P. 49–55.
  15. Angelova P.R., Iversen K.Z., Teschemacher A.G., Kasparov S., Gourine A.V., Abramov A.Y. // Glia. 2018. V. 66. P. 2126–2136.
  16. Xie L.; Jakob U. // J. Biol. Chem. 2019. V. 294. № 6. P. 2180–2190.
  17. Yamaguchi K., Nakajima K., Goto Y. // Biophysics and Physicobiology. 2023. V. 20. Art. e200013. https://doi.org/10.2142/biophysico.bppb-v20.0013
  18. Guan J., Jakob U. // J. Mol. Biol. 2024. Art. 168504. https://doi.org/10.1016/j.jmb.2024.168504
  19. Garcés P., Amaro A., Montecino M. // Review Biochem. Soc. Trans. 2024. V. 52 № 1. P. 123–135. https://doi.org/10.1042/BST20230257
  20. Fujiya M., Ueno N., Kashima S., Tanaka K., Sakatani A., Ando K., Moriichi K., Konishi H., Kamiyama N., Tasaki Y., Omura .T, Matsubara K., Taruishi M., Okumura T. // Clin. Pharmacol. Ther. 2020. V. 107. № 2. P. 452–461. https://doi.org/10.1002/cpt.1628
  21. Borghi F., Saiardi A. // Biochem. Soc. Trans. 2023. V. 51. № 5. P.1947–1956. https://doi.org/10.1042/BST20230483
  22. Diaz J., Ingall E., Benitez-Nelson C., Paterson D., de Jonge M.D., McNulty I., Brandes J.A. // Science. 2008. V. 320. P. 652–655.
  23. Diaz J.M., Steffen R., Sanders J.G., Tang Y. // Environ. Microbiol. 2019. V. 21 № 7. P. 2415–2425. https://doi.org/10.1111/1462-2920.14630
  24. Zhang C., Guisasola A., Baeza J.A. // Water Research. 2022. V. 212. Art. 118102. https://doi.org/10.1016/j.watres.2022.118102
  25. Дорофеев А.Г., Николаев Ю.А., Марданов А.В., Пименов Н.В. // Прикладная биохимия и микробиология. 2020. T. 56. № 1. С. 3–18.
  26. Hata Y., Hiruma S., Miyazaki H., Nakamura S. // ACS Omega. 2024. V. 9. № 11. P. 12635–12642. https://doi.org/10.1021/acsomega.3c07627
  27. Wang X., Gao Y., Chu G. // ACS Omega. 2021. V. 6. № 29. P. 18811–18822. https://doi.org/10.1021/acsomega.1c01999
  28. Zirnstein B., Schulze D., Schartel B. // Materials (Basel). 2019. V. 12. № 12. Art.pii: E1932. https://doi.org/10.3390/ma12121932
  29. Berardi G., Di Taranto A., Haouet N., Vita V., Palomba E., Rizzi G., Iammarino M. // Ital. J. Food Saf. 2023. V. 12. № 4. Art. 11110. https://doi.org/10.4081/ijfs.2023.11110
  30. Malik A., Khan J.M., Al-Amri A.M., Altwaijry N., Sharma P., Alhomida A., Sen P. // ACS Omega. 2023. V. 8 № 46. P. 44086–44092. https://doi.org/10.1021/acsomega.3c06210
  31. Müller W.E.G., Neufurth M., Wang S., Schröder H.C., Wang X. // Int. J. Nanomedicine. 2024. V. 19. P. 1303–1337. https://doi.org/10.2147/IJN.S446405
  32. Wang X., Schröder H.C., Müller W.E.G. // J. Mater. Chem. B. 2018. V. 6. № 16. P. 2385–2412. https://doi.org/10.1039/c8tb00241j
  33. Sugai R., Kobayashi M., Niizuma Y., Mizukami H., Koyasu M., Shiba T., Kitahara N., Manabe A // J. Esthet. Restor. Dent. 2024. V. 36 № 3. P. 484–493. https://doi.org/10.1111/jerd.13163
  34. Müller W.E.G., Neufurth M., Wang S., Schröder H.C., Wang X. // Small. 2024. Art. e2309528. https://doi.org/10.1002/smll.202309528
  35. Summonte S., Sanchez Armengol E., Ricci F., Sandmeier M., Hock N., Güclü-Tuncyüz A., Bernkop-Schnürch A. // Int. J. Pharm. 2024. V. 654. Art. 123983. https://doi.org/10.1016/j.ijpharm.2024.123983
  36. Tarayre C., Nguyen H.T., Brognaux A., Delepierre A., De Clercq L., Charlier R., Michels E., Meers E., Delvigne F. // Sensors (Basel). 2016. V. 16. № 6. Art. 797. https://doi.org/10.3390/s16060797
  37. Bru S., Jiménez J., Canadell D., Ariño J., Clotet J. // Microb. Cell. 2017. V. 2. № 4(1). P. 6–15. 10.15698/mic2017.01.551' target='_blank'>https://doi: 10.15698/mic2017.01.551
  38. Christ J.J., Willbold S., Blank L.M. // Anal. Chem. 2020.V. 92. № 6. P. 4167–4176.
  39. Kullik G.A., Waldmann M., Renné T. // Curr. Opin. Biotechnol. 2024. V. 90. Art. 103208. https://doi.org/10.1016/j.copbio.2024.103208
  40. Кулаев И.С., Вагабов В.М., Кулаковская Т.В. // Высокомолекулярные неорганические полифосфаты: биохимия, клеточная биология, биотехнология. М.: Изд. Научный мир, 2005. 215 с.
  41. Christ J.J., Blank L.M. // Anal. Biochem. 2018. V. 563. P. 71–78.
  42. Borghi F., Azevedo C., Johnson E., Burden J.J., Saiardi A. // Cell Rep. Methods. 2024. V. 4. № 7. Art. 100814. https://doi.org/10.1016/j.crmeth.2024.100814
  43. Clark J.E., Beegen H., Wood H.D. // J. Bacteriol. 1986. V. 168. P. 1212–1219.
  44. Langen P., Liss E. Naturwissenschaften. 1959. V. 46. P. 151–152.
  45. Вагабов В.М., Трилисенко Л.В., Щипанова И.Н., Сибельдина Л.А., Кулаев И.С. // Микробиология. 1998. T. 67. № 3. С. 193–198.
  46. Калебина Т.С.,. Кулаковская Е.В, Рекстина В.B., Трилисенко Л.В., Зиганшин Р.Х., Мармий Н.В., Есипов Д.С., Кулаковская Т.В. // Биохимия. 2023. Т. 88. № 1. С. 125–135.
  47. Wilson M.S.C., Bulley S.J., Pisani F., Irvine R.F., Saiardi A. // Open Biol. 2015. V. 5. Art. 150014. https://doi.org/10.1098/rsob.150014
  48. Werner T.P., Amrhein A.E.N., Freimoser F.M. // Arch. Microbiol. 2005.V. 184. P. 129–136. https://doi.org/ 10.1007/s00203-005-0031-2
  49. Несмеянова М.А., Дмитриев А., Кулаев И.С. // Микробиология. 1973. Т. 42. С. 213–219.
  50. Smirnov A., Suzina N., Chudinova N., Kulakovskaya T., Kulaev I. // FEMS Microbiol. Ecol. 2005. V. 52. № 1. P. 129–137. https://doi.org/10.1016/j.femsec.2004.10.012
  51. Christ J.J., Blank L.M. // Anal. Biochem. 2018. V. 548. P. 82–90.
  52. Эльдаров М.А., Баранов М.В., Думина М.В, Жгун А.А., Андреева Н.А., Трилисенко Л.В., Кулаковская Т.В., Рязанова Л.П., Кулаев И.С. // Биохимия. 2013. Т. 78. № 8. С. 1201–1209.
  53. Ledova L.A., Ryazanova L.P., Kulakovskaya T.V. // Microbiology. 2024. V. 93. P. 610–614.
  54. Ault-Riché D., Fraley C.D., Tzeng C.-M., Kornberg A. // J. Bacteriol. 1998. V. 180. № 7. P. 1841–1847.
  55. Tomashevsky A., Kulakovskaya E., Trilisenko L., Kulakovskiy I., Kulakovskaya T., Fedorov A., Eldarov M. // Biology. 2021. V. 10. Art. 487. https://doi.org/10.3390/biology10060487
  56. Labberton L., Kenne E., Long A.T., Nickel K.F., Di Gennaro A., Rigg R.A., Hernandez J.S., Butler L., Maas C., Stavrou E.X. // Nat. Commun. 2016. V. 7. Art. 12616.
  57. Кулаев И.С., Крашенинников И.А., Кокурина И.А. // Биохимия. 1966. Т. 31. С. 850–858.
  58. Vagabov V.M., Trilisenko L.V., Kulakovskaya T.V., Kulaev I.S. // FEMS Yeast Res. 2008. V. 8. P. 877–882.
  59. Вагабов В.М., Трилисенко Л.В., Кулаев И.С. // Биохимия. 2000. Т. 65. № 3. С. 414–420.
  60. Вагабов В.М., Трилисенко Л.В., Кулаковская Т.В., Кулаев И.С. // Микробиология. 2008. Т. 77. № 5. С. 611–616.
  61. Andreeva N., Ryazanova L., Dmitriev V., Kulakovskaya T., Kulaev I. // FEMS Yeast Res. 2013. V. 13. P. 463–470.
  62. Трилисенко Л.В., Ледова Л.А., Рязанова Л.П., Кулаковская Е.В., Томашевский А.А., Кулаковская Т.В. // Biologia et Biotechnologia. 2024. V. 1. Art. 4. https://doi.org/10.61847/pbcras.bbt.2024.1.4
  63. Eixler S., Selig U.,Karsten U. // Hydrobiologia. 2005. V. 533. P. 135–143. https://doi.org/10.1007/s10750-004-2406-9
  64. Thilo E., Wieker W. // Z. Anorg. Allg. Chem. 1957. V. 291. P. 164–1854.
  65. Ebel J.P., Colas J., Muller S. // Exp. Cell. Res. 1958. V. 15. P. 36–42.
  66. Baluyot E.S., Hartford C.G. // J. Chromatography A. 1996. V. 739. P. 217–222.
  67. Andreeva N.A., Okorokov L.A. // Yeast. 1993. V. 9. P. 127–139.
  68. Kumble K.D., Kornberg A. // J. Biol. Chem. 1995. V. 270. № 11. P. 5818–5822.
  69. Bock R.M. // Controlled partial hydrolysis of RNA. Methods in Enzymology. 1967. V. 12. Part A. P. 218–221.
  70. Чернышева Е.К., Крицкий М.С., Кулаев И.С. // Биохимия. 1971. T. 36. № 1. С. 138–142.
  71. Segawa S., Fujiya M., Konishi H., Ueno N., Kobayashi N., Shigyo T., Kohgo Y. // PLoS One. 2011. V. 6. № 8. Art. e23278. https://doi.org/10.1371/journal.pone.0023278
  72. Anand A., Aoyagi H. // Sci Rep. 2019. V. 9. Art. 4879. https://doi.org/10.1038/s41598-018-37752-8
  73. Corbridge D.E.C. // Phosphorus. An Outline of its Chemistry, Biochemistry and Technology (Second edition) Elsevier Sci. Pub. Comp. Amsterdam-Oxford-New York. 1980.
  74. Соколов И.А., Мурин И.В., Крийт В.Е., Горяинова А.Я., Пронкин А.А. // Вестник Санкт-Петербургского Университета. 2012. Сер. 4. Вып. 4. С. 54–74.
  75. Robinson T.E., Arkinstall L.A., Cox S.C., Grover L.M. // Comments on Inorganic Chemistry. 2022. V. 42. № 1. P. 47–59. https://doi.org/10.1080/02603594.2021.1973444
  76. Becke-Goehring M. // Phosphorus and its Compounds, Bd. 1: Chemistry, first ed., Wiley-VCH, Weinheim, Germany, 1961.
  77. Ruiz F.A., Rodrogues C.O., Docampo R. // J. Biol. Chem. 2001. V. 276. P. 26114–26121.
  78. Ohtomo R., Sekiguchi Y., Kojima T., Saito M. // Anal. Biochem. 2008. V. 383. P. 210–216. https://doi.org/10.1016/j.ab.2008.08.002
  79. Heinonen Y.K., Lahti R.Y. // Anal. Biochem. 1981. V. 113. P.313–317.
  80. Kulakovskaya T.V., Andreeva N.A., Karpov A., Sidorov I., Kulaev I.S. // Biochemistry (Moscow) 1999. V. 64. P. 990–993.
  81. Van Veldhoven P.P., Mannaerts G.P. // Anal. Biochem. 1987. V. 161. P. 45–48.
  82. Andreeva N., Ledova L., Ryazanova L., Tomashevsky A., Kulakovskaya T., Eldarov M. // Biochimie. 2019. V. 163. P. 101–107. https://doi.org/10.1016/j.biochi.2019.06.001
  83. Lichko L. Kulakovskaya T. // Adv. Enzym. Res. 2015. V. 3. P. 93–100. https://doi.org/10.4236/aer.2015.34010
  84. Christ J.J, Willbold S., Blank L.M. // Anal. Chem. 2019. V. 91. № 12. P. 7654–7661.
  85. Christ J.J. // Aminoverse. 2023. Homepage for the Phosfinity ChainQuant Assay hips://www.aminoverse.com/enzyme-products/phosfinity-chainquant/.
  86. Smith S.A., Morrissey J.H. // Electrophoresis 2007. V. 28. № 19. P. 3461–3465. https://doi.org/10.1002/elps.200700041
  87. Manoukian L., Stein R.S., Correa J.A., Frigon D., Omelon S. // Electrophoresis. 2023. V. 44. P. 1197–1205. https://doi.org/10.1002/elps.202300055
  88. Smith S.A., Yan Wang, Morrissey J.H. // Electrophoresis. 2018. V. 39. № 19. P. 2454–2459. https://doi.org/10.1002/elps.201800227
  89. Glohek T., Lunde M., Mudget M., Myers T.C. // Arch. Biochem. Biophys. 1971. V. 142. P. 508–513.
  90. Ugurbil L., Rottenberg H., Glynn R., Schulman G. // Proc. Natl. Acad. Sci. USA. 1978. V. 75. P. 2224–2228.
  91. Островский Д.Н., Сепетов Н.Ф., Решетняк В.И., Сибельдина Л.А. // Биохимия. 1980. Т. 45. С. 517–525.
  92. Lambert C., Weuster-Botz D., Weichenhain R., Kreutz E.W., de Graaf A.A., Schoberth S.M. // Acta Biotechnol. 2002. V. 22. P. 245–260.
  93. Mandala V.S., Loh D.M., Shepard S.M., Geeson M.B., Sergeyev I.V., Nocera D.G. Cummins C.C., Hong M. // J. Am. Chem. Soc. 2020. V. 142. № 43. P. 18407–18421. https://doi.org/10.1021/jacs.0c06335
  94. Pilatus U., Mayer, Hildebrandt. // Arch. Biochem. Biophys. 1989. V. 275. P. 215–223.
  95. Крупянко В.И., Вагабов В.М., Трилисенко Л.В., Крупянко П.В., Щипанова И.Н., Сибельдина Л.А., Кулаев И.С. // Прикл. биохим. микробиол. 1998. Т. 34. С. 430–434.
  96. Chen K.Y. // Prog. Mol. Subcell. Biol. 1999. V. 23. P. 253–273. https://doi.org/10.1007/978-3-642-58444-2_13
  97. Loureiro-Dias M.C., Santos H. // Arch. Microbiol. 1990. V. 153. P. 384–391.
  98. Pereira H., Lemos P.C., Carrondo M.J.T., Crespo J.P.S., Peis M.A.M., Santos H. // Water Res. 1996. V. 30. P. 2128–2138.
  99. Wang L., Kuchendorf C., Willbold S. // Algal Res. 2019. V. 43. Art. 101631. https://doi.org/10.1016/j.algal.2019.101631
  100. Viéville J., Tanty M., Delsuc M.-A. //. J. Magn. Reson. 2011. V. 212. P. 169–173.
  101. Lyratzakis A., Kalogerakis M., Polymerou K., Spyros A., Tsiotis G. // Biochim. Biophys. Acta. Gen. Subj. 2024. V. 1868. № 12. Art. 130718. https://doi.org/10.1016/j.bbagen.2024.130718
  102. Kooij J., Yang P.T., Bruun S., Magid J., Gro Nielsen U., Theil Kuhn L., Müller-Stöver D. // J. Environ. Manage. 2024. V. 370. Art. 122565. https://doi.org/10.1016/j.jenvman.2024.122565
  103. Bahgat N.T., Wilfert P., Eustace S.J., Korving L., van Loosdrecht M.C.M. 2024. V. 262. P. 122077. https://doi.org/10.1016/j.watres.2024
  104. Duersch B.G., Luo Y., Chen S., Soini S.A., Raja Somu D.M., Merk V.M. // Environ. Pollut. 2023. V. 334. Art. 121781. https://doi.org/10.1016/j.envpol.2023.121781
  105. Petriglieri F., Petersen J.F., Peces M., Nierychlo M., Hansen K., Baastrand C.E., Nielsen U.G., Reitzel K., Nielsen P.H. // Environ. Sci. Technol. 2022. V. 56. № 8. P. 5132–5140. https://doi.org/10.1021/acs.est.1c02642
  106. Lázaro B., Sarrias A., Tadeo F.J., Marc Martínez-Láinez J., Fernández A., Quandt E., Depares B., Dürr-Mayer T., Jessen H., Jiménez J., Clotet J., Bru S. // Methods. 2025. V. 234. P. 211–222. https://doi.org/10.1016/j.ymeth.2025.01.001
  107. Voříšek J., Knotková A., Kotyk A. // Zbl. Mikrobiol. 1982. V. 137. P. 421–432.
  108. Jensen T.E. // Arch. Microbiol. 1968. V. 62. P. 144–152.
  109. Schonborn C., Bauer H.D., Roske L. // Water. Res. 2001. V. 35. P. 3190-3196.
  110. Ward S.K., Heintz J.A., Albrecht R.M., Talaat A.M. // Front. Cell. Infect. Microbiol. 2012. V. 2. Art. 63. https://doi.org/10.3389/fcimb.2012.00063
  111. Tocheva E.I., Dekas A.E., McGlynn S.E., Morris D., Orphan V.J., Jensen G.J. // J Bacteriol. 2013. V. 195. № 17. P. 3940–3946. https://doi.org/10.1128/JB.00712-13
  112. Racki L.R., Tocheva E.I., Dieterle M.G., Sullivan M.C., Jensen G.J., Newman D.K. // Proc. Natl. Acad. Sci. U S A. 2017. V. 114. № 12. E2440–E2449. https://doi.org/10.1073/pnas.1615575114
  113. Janet-Maitre M., Pont S., Masson F.M., Sleiman S., Trouillon J., Robert-Genthon M. et al. // PLoS Pathog. 2023. V. 19. № 1. Art. e1011023. https://doi.org/10.1371/journal.ppat.1011023
  114. Ashford A.E., Ling-Lee M., Chilvers G.A. // New. Phytol. 1975. V. 74. P. 477–453.
  115. Orlovich D.A., Ashford A.E. // Protoplasma. 1993. V. 173. P. 91–102.
  116. Bucking H., Beckmann S., Heyser W., Kottke I. // Micron. 1998. V. 29. P. 53–61.
  117. Sanz-Luque E., Bhaya D., Grossman A.R. // Front. Plant. Sci. 2020. V. 11. P. 938. https://doi.org/10.3389/fpls.2020.00938
  118. Docampo R. // Microbiol. Mol. Biol. Rev. 2024. V. 88. № 1. Art. e0004223. https://doi.org/10.1128/mmbr.00042-23
  119. Wang X., Ackermann M., Tolba E., Neufurth M., Wurm F., Feng Q. et al. // Eur. Cell Mater. 2016. V. 32. P. 271–283. https://doi.org/10.22203/eCM.v032a18
  120. Hensgens C.M., Santos H., Zhang C., Kruizinga W.H., Hansen T.A. // Eur. J. Biochem. 1996. V. 242. P. 327–331.
  121. Majed N., Matthäus C., Diem M., Gu A.Z. // Environ. Sci. Technol. 2009. V. 43. № 14. P. 5436–5442. https://doi.org/10.1021/es900251n
  122. Moudříková Š., Ivanov I.N., Vítová M., Nedbal L., Zachleder V., Mojzeš P., Bišová K. // Cells. 2021. V. 10. Art. 62. https://doi.org/10.3390/cells10010062
  123. Allan R.A., Miller J.J. // Can. J. Microbiol. 1980. V. 26. P. 912–920.
  124. Tijssen J.P.F., Beekes H.W., Van Steveninck J. // Biochem. Biophys. Acta. 1982. V. 721 P. 394–398.
  125. Streichan M., Golecki J.R., Schon G. // FEMS Microbiol. Ecol. 1990. V. 73. P. 113–124.
  126. Kulakova A.N., Hobbs D., Smithen M., Pavlov E., Gilbert J.A., Quinn J.P., McGrath J.W. // Environ. Sci. Technol. 2011. V. 45. № 18. P. 7799–7803. https://doi.org/10.1021/es201123r
  127. Frank C., Pfeiffer D., Aktas M., Jendrossek D. // Microb. Physiol. 2022. V. 32. № 3–4. P. 71–82. https://doi.org/10.1159/000521970
  128. Puchkov E.O. // Yeast. 2010. V. 27. № 6. P. 309–315. https://doi.org/10.1002/yea.1754
  129. Gomes F.M., Ramos I.B., Wendt C., Girard-Dias W., De Souza W., Machado E.A., Miranda K. // Eur. J. Histochem. 2013. V. 57. № 4. Art. e34. https://doi.org/10.4081/ejh.2013.e34
  130. Aschar-Sobbi R., Abramov A.Y., Diao C., Kargacin M.E., Kargacin G.J., French R.J., Pavlov E. // J. Fluoresc. 2008. V. 18. № 5. P. 859–866. https://doi.org/10.1007/s10895-008-0315-4
  131. Serafim L.S., Lemos O.C., Levantesi C., Tandoi V., Santos H., Reis M.A. // J. Microbiol. Methods. 2002. V. 51. P. 1–18.
  132. Liu W.T., Nielsen A.T., Wu J.H., Tsai C.S., Matsuo Y., Molin S. // Environ. Microbiol. 2001. V. 3. № 2. P. 110–122. https://doi.org/10.1046/j.1462-2920.2001.00164.x
  133. Martin P., Van Mooy B.A. // Appl. Environ. Microbiol. 2013. V. 79. № 1. P. 273–281. https://doi.org/10.1128/AEM.02592-12
  134. Terashima M., Kamagata Y., Kato S. // Front. Microbiol. 2020. V. 11. Art. 793. https://doi.org/10.3389/fmicb.2020.00793
  135. Diaz J.M., Ingall E.D. // Environ. Sci. Technol. 2010. V. 44. P. 4665–4671. https://doi.org/10.1021/es100191h
  136. Tanious F.A., Veal J.M., Buczak H., Ratmeyer L.S., Wilson W.D. // Biochemistry. 1992. V. 31. P. 3103–3112.
  137. Sato A., Aizawa H., Tsujino T., Isobe K., Watanabe T., Kitamura Y., Kawase T. // Int. J. Mol. Sci. 2021. V. 22. № 3. Art. 1040. https://doi.org/10.3390/ijms22031040
  138. Kawase T., Suzuki K., Kamimura M., Mochizuki T., Ushiki T. // Meth. Protoc. 2023. V. 6. № 4. Art. 59. https://doi.org/10.3390/mps6040059.
  139. Pavlov E., Aschar-Sobbi R., Campanella M., Turner R.J., Gómez-García M.R., Abramov A.Y. // J. Biol. Chem. 2010. V. 285. № 13. P. 9420–9428. https://doi.org/10.1074/jbc.M109.013011
  140. Baev A.Y., Angelova P.R., Abramov A.Y. // Biochem. J. 2020. V. 477. № 8. P. 1515–1524. https://doi.org/10.1042/BCJ20200042
  141. Günth S., Trutnau M., Kleinsteuber S., Hause G., Bley T., Röske I., Harms H., Müller S. // Appl. Environ. Microbiol. 2009. V. 75. P. 2111–2121.
  142. Angelova P.R., Agrawalla B.K., Elustondo P.A., Gordon J., Shiba T., Abramov A.Y., Chang Y.T., Pavlov E.V. // ACS Chem. Biol. 2014. V. 9. № 9. P. 2101–10. https://doi.org/10.1021/cb5000696
  143. Yang X., Gao R., Zhang Q., Yung C.C.M., Yin H., Li J. // Environ. Sci. Technol. 2024. V. 58 № 32. P. 14249–14259. https://doi.org/10.1021/acs.est.4c04545
  144. Deitert A., Fees J., Mertens A., Nguyen Van D., Maares M., Haase H., Blank L.M., Keil C. Yeast. 2024. V. 41. № 10. P. 593–604. https://doi.org/10.1002/yea.3979
  145. Grossgebauer K. // Microsc. Acta. 1980. V. 83. № 1. P. 49–54.
  146. Kolozsvari B., Parisi F., Saiardi A. // Biochem. J. 2014. V. 460. № 3. P. 377–385. https://doi.org/10.1042/BJ20140237
  147. Omelon S., Georgiou J., Habraken W. // Biochem. Soc. Trans. 2016. V. 44. № 1. P. 46–49. https://doi.org/10.1042/BST20150231
  148. Lee A., Whitesides G.M. // Anal. Chem. 2010. V. 82. № 16. P. 6838–6846. https://doi.org/10.1021/ac1008018
  149. Choi B.K., Hercules D.M., Houalla M. // Anal. Chem. 2000. V. 72. № 20. P. 5087–5091. https://doi.org/10.1021/ac000044q
  150. Jiménez J., Lázaro B., Sarrias A., Tadeo F.J., Pérez-Montero M., Clotet J., Bru S. // STAR Protoc. 2022. V. 3 № 2. Art. 101363. https://doi.org/10.1016/j.xpro.2022.101363

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).