Biosynthesis of suberic acid from glucose through the inverted fatty acid β-oxidation by recombinant Escherichia coli strains
- Authors: Gulevich A.Y.1, Skorokhodova A.Y.1, Debabov V.G.1
-
Affiliations:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Issue: Vol 61, No 2 (2025)
- Pages: 139-148
- Section: Articles
- URL: https://journals.rcsi.science/0555-1099/article/view/308608
- DOI: https://doi.org/10.31857/S0555109925020031
- EDN: https://elibrary.ru/entneq
- ID: 308608
Cite item
Abstract
Using directly engineered derivatives of previously constructed adipate-producingEscherichia colistrains MG1655lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA,∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, ∆fadE, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fabI, PL-SDj10-paaJ,∆aceBAK,∆glcBи MG1655lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA,∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fadE, PL-SDj10-paaJ,∆aceBAK,∆glcBthe feasibility of suberic acid biosynthesis from glucose by this bacterium resulting from the reversal of the native fatty acid β-oxidation pathway was demonstrated. The condensation of acetyl-CoA with succinyl-CoA and adipyl-CoA was ensured in recombinants by 3-oxoadipyl-CoA thiolase PaaJ, whereas the putative acetyl-CoA C-acetyltransferase YqeF was unable to catalyse the respective reactions.The biosynthesis of ~60 μM suberic acid was achieved upon significant enhancement in the strains of the expression of the bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA reductase gene,fadB. Subsequent inactivation of succinate dehydrogenase in the strains increased the intracellular availability of succinyl-CoA for the initiation of the first round of cycle reversal and favored an increase in the accumulation of the target compound by the recombinants to ~75 μM. The results provide a framework for the development of highly efficient producing strains for bio-based production of suberic acid from renewable raw materials.
About the authors
A. Y. Gulevich
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia
A. Y. Skorokhodova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia
V. G. Debabov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Author for correspondence.
Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia
References
- Tarasava K.,Lee S.H.,Chen J.,Köpke M.,Jewett M.C.,Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2022. V. 49. № 2. kuac003. https://doi.org/10.1093/jimb/kuac003
- Fujita Y.,Matsuoka H.,Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829–839.
- Kim S.,Cheong S.,Chou A.,Gonzalez R. // Curr. Opin. Biotechnol. 2016. V. 42. P.206–215. https://doi.org/10.1016/j.copbio.2016.07.004
- Dellomonaco C.,Clomburg J.M.,Miller E.N.,Gonzalez R. // Nature. 2011. V. 476. P. 355–359. https://doi.org/10.1038/nature10333
- Gulevich A.Y.,Skorokhodova A.Y.,Sukhozhenko A.V.,Shakulov R.S.,Debabov V.G. // Biotechnol. Lett. 2012. V. 34. P. 463–469. https://doi.org/10.1007/s10529-011-0797-z
- Mehrer C.R.,Incha M.R.,Politz M.C.,Pfleger B.F. // Metab. Eng. 2018. V. 48. P. 63–71. https://doi.org/10.1016/j.ymben.2018.05.011
- Chen J.,Gonzalez R. // Metab. Eng. 2023. V. 79. P. 173–181. https://doi.org/10.1016/j.ymben.2023.07.006
- Kim S.,Clomburg J.M.,Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2015. V. 42. P. 465–75. https://doi.org/10.1007/s10295-015-1589-6
- Kim S.,Cheong S.,Gonzalez R. // Metab. Eng. 2016. V. 36. P. 90–98. https://doi.org/10.1016/j.ymben.2016.03.005
- Gulevich A.Y.,Skorokhodova A.Y.,Debabov V.G. // Biomolecules. 2024. V. 14. 449. http://doi.org/10.3390/biom14040449
- Cheong S.,Clomburg J.M.,Gonzalez R. // Nat. Biotechnol. V. 34. № 5. P. 556–561. https://doi.org/10.1038/nbt.3505
- Lang M.,Li H. // ChemSusChem. 2022. V. 15. № 1. e202101531. https://doi.org/10.1002/cssc.202101531
- Liao Z.,Yeoh Y.K.,Parumasivam T.,Koh W.Y.,Alrosan M.,Alu’datt M.H.,Tan T.C. // RSC Adv. 2024.V. 14. № 24. P. 17008–17021. https://doi.org/10.1039/d4ra02598a
- Гулевич А.Ю.,Скороходова А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 59. № 3. С. 235–243.
- Гулевич А.Ю.,Скороходова А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 60. № 3. С. 28–35.
- Sambrook J.,Fritsch E.,Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
- Скороходова А.Ю.,Стасенко А.А.,Гулевич А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2018. Т. 54. № 3. С. 244–252.
- Skorokhodova A.Y.,Gulevich A.Y.,Debabov V.G. // Biotechnol. Rep. 2022. V. 33. e00703. http://doi.org/10.1016/j.btre.2022.e00703
- Datsenko K.A.,Wanner B.L. // Proc. Natl. Acad. Sci. USA.2000. V. 97. № 12. Р. 6640–6645.
- Каташкина Ж.И.,Скороходова А.Ю.,Зименков Д.В.,Гулевич А.Ю.,Минаева Н.И.,Дорошенко В.Г.,Бирюкова И.В.,Машко С.В. // Молекулярная биология. 2005. Т. 39. № 5. С. 823–831.
- Гулевич А.Ю.,Скороходова А.Ю.,Ермишев В.Ю.,Крылов А.А.,Минаева Н.И.,Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547–557.
- Clark D.P.,Cronan J.E. // EcoSal Plus.2005. V. 1. 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4.
- Binstock J.F.,Schulz H. // Methods. Enzymol. 1981. V. 71. P. 403–411. https://doi.org/10.1016/0076-6879(81)71051-6
- Teufel R.,Mascaraque V.,Ismail W.,Voss M.,Perera J.,Eisenreich W.,Haehnel W.,Fuchs G. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14390–14395. https://doi.org/10.1073/pnas.1005399107
- Deuschle U.,Kammerer W.,Gentz R.,Bujard H. // EMBO J. 1986. V. 5. P. 2987–2994. https://doi.org/10.1002/j.1460-2075.1986.tb04596.x
Supplementary files
