Preparation of Phage Antibodies to Heat Shock Proteins and Studying the Dynamics of their Accumulation in Mice with Xenotransplant Tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a naïve human scFv phage library, affinity selection of miniantibodies specific to heat shock proteins isolated from MH22a hepatoma cells and Sp2/0-Ag14 plasmacytoma cells was carried out. Using the obtained phage antibodies by dot-immunoassay and enzyme-linked immunosorbent assay, the dynamics of the concentration of heat shock proteins in the blood serum of mice with implanted tumor cells of the MH22a line was studied. Starting from the 14th day after xenotransplantation, there was a gradual increase in the level of heat shock proteins in the blood serum. It was found that after implantation of tumor cells, tumor growth was accompanied by a significant increase in the accumulation of heat shock proteins in the blood serum. It has been shown that miniantibodies specific to heat shock proteins are an effective tool for determining and monitoring the accumulation of heat shock proteins in the blood serum of animals.

About the authors

L. A. Dykman

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

S. A. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences; Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410049, Saratov; Russia, 410012, Saratov

R. D. Vyrshchikov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

K. K. Fursova

The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 142290, Pushchino

F. A. Brovko

The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 142290, Pushchino

D. A. Soldatov

Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410012, Saratov

O. I. Guliy

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: guliy_olga@mail.ru
Russia, 410049, Saratov

References

  1. Schlesinger M.J. // J. Biol. Chem. 1990. V. 265. № 21. P. 12111–12114.
  2. Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. P. 253–266.
  3. Albakova Z., Siam M.K.S., Sacitharan P.K., Ziganshin R.H., Ryazantsev D.Y., Sapozhnikov A.M. // Transl. Oncol. 2021. V. 14. № 2. 100995. https://doi.org/10.1016/j.tranon.2020.100995
  4. Arrigo A.P., Gibert B. // Cancers. 2014. V. 6. P. 333–365.
  5. Calderwood S.K., Gong J. // Trends Biochem. Sci. 2016. V. 41. P. 311–323.
  6. Das J.K., Xiong X., Ren X., Yang J.-M., Song J. // J. Oncol. 2019. V. 2019. 3267207.https://doi.org/10.1155/2019/3267207
  7. Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. // MedComm. 2022. V. 3. № 3. e161. https://doi.org/10.1002/mco2.161
  8. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron. X. 2022. V. 11. 100211. https://doi.org/1.1016/j.biosx.2022.100211
  9. Murshid A., Gong J., Stevenson M.A., Calderwood S.K. // Expert Rev. Vaccines. 2011. V. 10. № 11. P. 1553–1568.
  10. Троицкая О.С., Новак Д.Д., Рихтер В.А., Коваль О.А. // Acta Naturae. 2022. Т. 14. № 1. С. 40–53.
  11. Shevtsov M., Multhoff G. // Front. Immunol. 2016. V. 7. P. 171. https://doi.org/10.3389/fimmu.2016.00171
  12. Komarova E.Y., Suezov R.V., Nikotina A.D., Aksenov N.D., Garaeva L.A., Shtam T.A. et al // Sci. Rep. 2021. V. 11. 21314. https://doi.org/10.1038/s41598-021-00734-4
  13. Tsan M.F., Gao B. // Am. J. Physiol. Cell Physiol. 2004. V. 286. № 4. P. C739–C744.
  14. Maki R.G., Livingston P.O., Lewis J.J., Janetzki S., Klimstra D., Desantis D., Srivastava P.K., Brennan M.F. // Dig. Dis. Sci. 2007. V. 52. № 8. P. 1964–1972.
  15. Bolhassani A., Rafati S. // Expert Rev. Vaccines. 2008. V. 7. № 8. P. 1185–1199.
  16. Kang J., Lee H.-J., Lee J., Hong J., Kim Y.H., Disis M.L., Gim J.-A., Park K.H. // J. Immunother. Cancer. 2022. V. 10. e004702. https://doi.org/10.1136/jitc-2022-004702
  17. Alberti G., Vergilio G., Paladino L., Barone R., Cappello F., de Macario E.C. et al. // Int. J. Mol. Sci. 2022. V. 23. 7792. https://doi.org/10.3390/ijms23147792
  18. Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L. et al. // J. Clin. Oncol. 2008. V. 26. № 6. P. 955–962.
  19. Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. // Nat. Cancer. 2022. V. 3. P. 911–926.
  20. Fritah H., Rovelli R., Chiang C.L.-L., Kandalaft L.E. // Cancer Treat. Rev. 2022. V. 106. 102383. https://doi.org/10.1016/j.ctrv.2022.102383
  21. Liu J., Fu M., Wang M., Wan D., Wie Y., Wei X. // J. Hematol. Oncol. 2022. V. 15. P. 28. https://doi.org/10.1186/s13045-022-01247-x
  22. Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P. et al. // Int. J. Mol. Sci. 2022. V. 23. № 22. 14313. https://doi.org/10.3390/ijms232214313
  23. Jolly C., Morimoto R.I. // J. Natl. Cancer Inst. 2000. V. 92. № 19. P. 1564–1572.
  24. Yun C.W., Kim H.J., Lim J.H., Lee S.H. // Cells. 2020. V. 9. № 1. P. 60. https://doi.org/10.3390/cells9010060
  25. Cornford P.A., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M., Neoptolemos J.P., Ke Y. // Cancer Res. 2000. V. 60. № 24. P. 7099–7105.
  26. Saini J., Sharma P.K. // Curr. Drug Targets. 2017. V. 19. № 13. P. 1478–1490.
  27. Ciocca D.R., Calderwood S.K. // Cell Stress Chaperon. 2005. V. 10. № 2. P. 86–103.
  28. Seigneuric R., Mjahed H., Gobbo J., Joly A.-L., Berthenet K., Shirley S., Garrido C. // Front. Oncol. 2011. V. 1. P. 37. https://doi.org/10.3389/fonc.2011.00037
  29. Ramirez-Valles E.G., Rodríguez-Pulido A., Barraza-Salas M., Martínez-Velis I., Meneses-Morales I., Ayala-García V.M., Alba-Fierro C.A. // Technol. Cancer Res. Treat. 2020. V. 19. 1533033820957033. https://doi.org/10.1177/1533033820957033
  30. Mahato K., Maurya P.K., Chandra P. // 3 Biotech. 2018. V. 8. P. 149. https://doi.org/10.1007/s13205-018-1148-8
  31. Cavallaro S., Horak J., Hååg P., Gupta D., Stiller C., Sahu S.S., Görgens A. et al. // ACS Sens. 2019. V. 4. № 5. P. 1399–1408.
  32. Baghbaderani S.S., Mokarian P., Moazzam P. // Curr. Anal. Chem. 2022. V. 18. № 1. P. 63–78.
  33. Smith G.P. // Science. 1985. V. 228. № 4705. P. 1315–1317.
  34. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. // Nature. 1990. V. 348. № 6301. P. 552–554.
  35. Zhao F., Shi R., Liu R., Tian Y., Yang Z. // Food Chem. 2021. V. 339. 128084. https://doi.org/10.1016/j.foodchem.2020.128084
  36. Ye J., Guo J., Li T., Tian J., Yu M., Wang X. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 2. P. 1843–1867.
  37. Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
  38. Trilling A.K., De Ronde H., Noteboom L., Van Houwelingen A., Roelse M., Srivastava S.K. et al // PLoS One. 2011. V. 6. № 10. e26754. https://doi.org/10.1371/journal.pone.0026754
  39. Vostakolaei M.A., Molavi O., Hejazi M.S., Kordi S., Rahmati S., Barzegari A., Abdolalizadeh J. // J. Cell. Biochem. 2019. V. 120. № 9. P. 14711–14724.
  40. Skarga Y., Vrublevskaya V., Evdokimovskaya Y., Morenkov O. // Biomed. Chromatogr. 2009. V. 23. № 11. P. 1208–1216.
  41. Aguilera R., Saffie C., Tittarelli A., Gonzalez F.E., Ramírez M., Reyes D. et al. // Clin. Cancer Res. 2011. V. 17. № 8. P. 2474–2483.
  42. Улитин А.Б., Капралова М.В., Ламан А.Г., Шепеляковская А.О., Булгакова Е.В., Фурсова К.К. и др. // Доклады Академии наук. 2005. Т. 405. № 4. С. 555–558.
  43. Staroverov S.A., Kozlov S.V., Fomin A.S., Gabalov K.P., Khanadeev V.A., Soldatov D.A. et al. // ADMET & DMPK. 2021. V. 9. № 4. P. 255–266.
  44. Frens G. // Nature Phys. Sci. 1973. V. 241. P. 20–22.
  45. Дыкман Л.А., Богатырев В.А. // Биохимия. 1997. Т. 62. № 4. С. 411–418.
  46. Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. № 7. P. C98–C101.
  47. Gunther S., Ostheimer C., Stang S., Specht H.M., Mozes P., Jesinghaus M. et al // Front. Immunol. 2015. V. 6. P. 556. https://doi.org/10.3389/fimmu.2015.00556
  48. Romanucci M., Bastow T., Della Salda L. // Cell Stress Chaperon. 2008. V. 13. № 3. P. 253–262.
  49. Ramkaran, Preeti, Kumar R., Kumar S., Gera S. // Pharma Innov. J. 2019. V. 8. № 2. P. 431–434.
  50. Petrenko V.A., Gillespie J.W., Xu H., O’Dell T., De Plano L.M. // Viruses. 2019. V. 11. 785. https://doi.org/10.3390/v11090785
  51. Yu Q., Zhao Q., Wang S., Zhao S., Zhang S., Yin Y., Dong Y. // Anal. Biochem. 2020. V. 594. 113591. https://doi.org/10.1016/j.ab.2020.113591
  52. Djebbi K., Xing J., Weng T., Bahri M., Elaguech M.A., Du C. et al // Anal. Chim. Acta. 2022. V. 1208. 339778. https://doi.org/10.1016/j.aca.2022.339778
  53. Li Y., Hu K., Yu Y., Rotenberg S.A., Amatore C., Mirkin M.V. // J. Am. Chem. Soc. 2017. V. 139. № 37. P. 13055–13062.
  54. Vaneev A.N., Gorelkin P.V., Garanina A.S., Lopatukhina H.V., Vodopyanov S.S., Alova A.V. et al. // Anal. Chem. 2020. V. 92. P. 8010−8014.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (461KB)
3.

Download (222KB)
4.

Download (55KB)
5.

Download (189KB)

Copyright (c) 2023 Л.А. Дыкман, С.А. Староверов, Р.Д. Вырщиков, К.К. Фурсова, Ф.А. Бровко, Д.А. Солдатов, О.И. Гулий

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».