Preparation of Phage Antibodies to Heat Shock Proteins and Studying the Dynamics of their Accumulation in Mice with Xenotransplant Tumors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using a naïve human scFv phage library, affinity selection of miniantibodies specific to heat shock proteins isolated from MH22a hepatoma cells and Sp2/0-Ag14 plasmacytoma cells was carried out. Using the obtained phage antibodies by dot-immunoassay and enzyme-linked immunosorbent assay, the dynamics of the concentration of heat shock proteins in the blood serum of mice with implanted tumor cells of the MH22a line was studied. Starting from the 14th day after xenotransplantation, there was a gradual increase in the level of heat shock proteins in the blood serum. It was found that after implantation of tumor cells, tumor growth was accompanied by a significant increase in the accumulation of heat shock proteins in the blood serum. It has been shown that miniantibodies specific to heat shock proteins are an effective tool for determining and monitoring the accumulation of heat shock proteins in the blood serum of animals.

Sobre autores

L. Dykman

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

S. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences; Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410049, Saratov; Russia, 410012, Saratov

R. Vyrshchikov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 410049, Saratov

K. Fursova

The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 142290, Pushchino

F. Brovko

The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry of the Russian Academy of Sciences

Email: guliy_olga@mail.ru
Russia, 142290, Pushchino

D. Soldatov

Saratov State Vavilov Agrarian University

Email: guliy_olga@mail.ru
Russia, 410012, Saratov

O. Guliy

Institute of Biochemistry and Physiology of Plants and Microorganisms – Research Institution
Saratov Federal Scientific Centre of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: guliy_olga@mail.ru
Russia, 410049, Saratov

Bibliografia

  1. Schlesinger M.J. // J. Biol. Chem. 1990. V. 265. № 21. P. 12111–12114.
  2. Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. P. 253–266.
  3. Albakova Z., Siam M.K.S., Sacitharan P.K., Ziganshin R.H., Ryazantsev D.Y., Sapozhnikov A.M. // Transl. Oncol. 2021. V. 14. № 2. 100995. https://doi.org/10.1016/j.tranon.2020.100995
  4. Arrigo A.P., Gibert B. // Cancers. 2014. V. 6. P. 333–365.
  5. Calderwood S.K., Gong J. // Trends Biochem. Sci. 2016. V. 41. P. 311–323.
  6. Das J.K., Xiong X., Ren X., Yang J.-M., Song J. // J. Oncol. 2019. V. 2019. 3267207.https://doi.org/10.1155/2019/3267207
  7. Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. // MedComm. 2022. V. 3. № 3. e161. https://doi.org/10.1002/mco2.161
  8. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron. X. 2022. V. 11. 100211. https://doi.org/1.1016/j.biosx.2022.100211
  9. Murshid A., Gong J., Stevenson M.A., Calderwood S.K. // Expert Rev. Vaccines. 2011. V. 10. № 11. P. 1553–1568.
  10. Троицкая О.С., Новак Д.Д., Рихтер В.А., Коваль О.А. // Acta Naturae. 2022. Т. 14. № 1. С. 40–53.
  11. Shevtsov M., Multhoff G. // Front. Immunol. 2016. V. 7. P. 171. https://doi.org/10.3389/fimmu.2016.00171
  12. Komarova E.Y., Suezov R.V., Nikotina A.D., Aksenov N.D., Garaeva L.A., Shtam T.A. et al // Sci. Rep. 2021. V. 11. 21314. https://doi.org/10.1038/s41598-021-00734-4
  13. Tsan M.F., Gao B. // Am. J. Physiol. Cell Physiol. 2004. V. 286. № 4. P. C739–C744.
  14. Maki R.G., Livingston P.O., Lewis J.J., Janetzki S., Klimstra D., Desantis D., Srivastava P.K., Brennan M.F. // Dig. Dis. Sci. 2007. V. 52. № 8. P. 1964–1972.
  15. Bolhassani A., Rafati S. // Expert Rev. Vaccines. 2008. V. 7. № 8. P. 1185–1199.
  16. Kang J., Lee H.-J., Lee J., Hong J., Kim Y.H., Disis M.L., Gim J.-A., Park K.H. // J. Immunother. Cancer. 2022. V. 10. e004702. https://doi.org/10.1136/jitc-2022-004702
  17. Alberti G., Vergilio G., Paladino L., Barone R., Cappello F., de Macario E.C. et al. // Int. J. Mol. Sci. 2022. V. 23. 7792. https://doi.org/10.3390/ijms23147792
  18. Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L. et al. // J. Clin. Oncol. 2008. V. 26. № 6. P. 955–962.
  19. Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. // Nat. Cancer. 2022. V. 3. P. 911–926.
  20. Fritah H., Rovelli R., Chiang C.L.-L., Kandalaft L.E. // Cancer Treat. Rev. 2022. V. 106. 102383. https://doi.org/10.1016/j.ctrv.2022.102383
  21. Liu J., Fu M., Wang M., Wan D., Wie Y., Wei X. // J. Hematol. Oncol. 2022. V. 15. P. 28. https://doi.org/10.1186/s13045-022-01247-x
  22. Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P. et al. // Int. J. Mol. Sci. 2022. V. 23. № 22. 14313. https://doi.org/10.3390/ijms232214313
  23. Jolly C., Morimoto R.I. // J. Natl. Cancer Inst. 2000. V. 92. № 19. P. 1564–1572.
  24. Yun C.W., Kim H.J., Lim J.H., Lee S.H. // Cells. 2020. V. 9. № 1. P. 60. https://doi.org/10.3390/cells9010060
  25. Cornford P.A., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M., Neoptolemos J.P., Ke Y. // Cancer Res. 2000. V. 60. № 24. P. 7099–7105.
  26. Saini J., Sharma P.K. // Curr. Drug Targets. 2017. V. 19. № 13. P. 1478–1490.
  27. Ciocca D.R., Calderwood S.K. // Cell Stress Chaperon. 2005. V. 10. № 2. P. 86–103.
  28. Seigneuric R., Mjahed H., Gobbo J., Joly A.-L., Berthenet K., Shirley S., Garrido C. // Front. Oncol. 2011. V. 1. P. 37. https://doi.org/10.3389/fonc.2011.00037
  29. Ramirez-Valles E.G., Rodríguez-Pulido A., Barraza-Salas M., Martínez-Velis I., Meneses-Morales I., Ayala-García V.M., Alba-Fierro C.A. // Technol. Cancer Res. Treat. 2020. V. 19. 1533033820957033. https://doi.org/10.1177/1533033820957033
  30. Mahato K., Maurya P.K., Chandra P. // 3 Biotech. 2018. V. 8. P. 149. https://doi.org/10.1007/s13205-018-1148-8
  31. Cavallaro S., Horak J., Hååg P., Gupta D., Stiller C., Sahu S.S., Görgens A. et al. // ACS Sens. 2019. V. 4. № 5. P. 1399–1408.
  32. Baghbaderani S.S., Mokarian P., Moazzam P. // Curr. Anal. Chem. 2022. V. 18. № 1. P. 63–78.
  33. Smith G.P. // Science. 1985. V. 228. № 4705. P. 1315–1317.
  34. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. // Nature. 1990. V. 348. № 6301. P. 552–554.
  35. Zhao F., Shi R., Liu R., Tian Y., Yang Z. // Food Chem. 2021. V. 339. 128084. https://doi.org/10.1016/j.foodchem.2020.128084
  36. Ye J., Guo J., Li T., Tian J., Yu M., Wang X. et al. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. № 2. P. 1843–1867.
  37. Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
  38. Trilling A.K., De Ronde H., Noteboom L., Van Houwelingen A., Roelse M., Srivastava S.K. et al // PLoS One. 2011. V. 6. № 10. e26754. https://doi.org/10.1371/journal.pone.0026754
  39. Vostakolaei M.A., Molavi O., Hejazi M.S., Kordi S., Rahmati S., Barzegari A., Abdolalizadeh J. // J. Cell. Biochem. 2019. V. 120. № 9. P. 14711–14724.
  40. Skarga Y., Vrublevskaya V., Evdokimovskaya Y., Morenkov O. // Biomed. Chromatogr. 2009. V. 23. № 11. P. 1208–1216.
  41. Aguilera R., Saffie C., Tittarelli A., Gonzalez F.E., Ramírez M., Reyes D. et al. // Clin. Cancer Res. 2011. V. 17. № 8. P. 2474–2483.
  42. Улитин А.Б., Капралова М.В., Ламан А.Г., Шепеляковская А.О., Булгакова Е.В., Фурсова К.К. и др. // Доклады Академии наук. 2005. Т. 405. № 4. С. 555–558.
  43. Staroverov S.A., Kozlov S.V., Fomin A.S., Gabalov K.P., Khanadeev V.A., Soldatov D.A. et al. // ADMET & DMPK. 2021. V. 9. № 4. P. 255–266.
  44. Frens G. // Nature Phys. Sci. 1973. V. 241. P. 20–22.
  45. Дыкман Л.А., Богатырев В.А. // Биохимия. 1997. Т. 62. № 4. С. 411–418.
  46. Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. № 7. P. C98–C101.
  47. Gunther S., Ostheimer C., Stang S., Specht H.M., Mozes P., Jesinghaus M. et al // Front. Immunol. 2015. V. 6. P. 556. https://doi.org/10.3389/fimmu.2015.00556
  48. Romanucci M., Bastow T., Della Salda L. // Cell Stress Chaperon. 2008. V. 13. № 3. P. 253–262.
  49. Ramkaran, Preeti, Kumar R., Kumar S., Gera S. // Pharma Innov. J. 2019. V. 8. № 2. P. 431–434.
  50. Petrenko V.A., Gillespie J.W., Xu H., O’Dell T., De Plano L.M. // Viruses. 2019. V. 11. 785. https://doi.org/10.3390/v11090785
  51. Yu Q., Zhao Q., Wang S., Zhao S., Zhang S., Yin Y., Dong Y. // Anal. Biochem. 2020. V. 594. 113591. https://doi.org/10.1016/j.ab.2020.113591
  52. Djebbi K., Xing J., Weng T., Bahri M., Elaguech M.A., Du C. et al // Anal. Chim. Acta. 2022. V. 1208. 339778. https://doi.org/10.1016/j.aca.2022.339778
  53. Li Y., Hu K., Yu Y., Rotenberg S.A., Amatore C., Mirkin M.V. // J. Am. Chem. Soc. 2017. V. 139. № 37. P. 13055–13062.
  54. Vaneev A.N., Gorelkin P.V., Garanina A.S., Lopatukhina H.V., Vodopyanov S.S., Alova A.V. et al. // Anal. Chem. 2020. V. 92. P. 8010−8014.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (461KB)
3.

Baixar (222KB)
4.

Baixar (55KB)
5.

Baixar (189KB)

Declaração de direitos autorais © Л.А. Дыкман, С.А. Староверов, Р.Д. Вырщиков, К.К. Фурсова, Ф.А. Бровко, Д.А. Солдатов, О.И. Гулий, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies