Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method is proposed for quickly choosing the blur coefficients of kernel functions in a non-parametric estimate of a multidimensional probability density of Rosenblatt–Parzen type. The technique is based on the analysis of the asymptotic properties of a multidimensional probability density estimate. The properties of the fast algorithm for choosing the blur coefficients of a kernel probability density estimate are investigated.

Sobre autores

A. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Autor responsável pela correspondência
Email: lapko@icm.krasn.ru
Rússia, Krasnoyarsk; Krasnoyarsk

V. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
Rússia, Krasnoyarsk; Krasnoyarsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019