Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method is proposed for quickly choosing the blur coefficients of kernel functions in a non-parametric estimate of a multidimensional probability density of Rosenblatt–Parzen type. The technique is based on the analysis of the asymptotic properties of a multidimensional probability density estimate. The properties of the fast algorithm for choosing the blur coefficients of a kernel probability density estimate are investigated.

作者简介

A. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: lapko@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

V. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019