Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates
- Авторы: Lapko A.V.1,2, Lapko V.A.1,2
-
Учреждения:
- Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences
- Reshetnev Siberian State University of Science and Technology
- Выпуск: Том 61, № 10 (2019)
- Страницы: 979-986
- Раздел: Article
- URL: https://journals.rcsi.science/0543-1972/article/view/246616
- DOI: https://doi.org/10.1007/s11018-019-01536-x
- ID: 246616
Цитировать
Аннотация
A method is proposed for quickly choosing the blur coefficients of kernel functions in a non-parametric estimate of a multidimensional probability density of Rosenblatt–Parzen type. The technique is based on the analysis of the asymptotic properties of a multidimensional probability density estimate. The properties of the fast algorithm for choosing the blur coefficients of a kernel probability density estimate are investigated.
Об авторах
A. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology
Автор, ответственный за переписку.
Email: lapko@icm.krasn.ru
Россия, Krasnoyarsk; Krasnoyarsk
V. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology
Email: lapko@icm.krasn.ru
Россия, Krasnoyarsk; Krasnoyarsk
Дополнительные файлы
