Analysis of Optimization Methods for Nonparametric Estimation of the Probability Density with Respect to the Blur Factor of Kernel Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a comparison of the most common optimization methods for the nonparametric estimation of the probability density of Rosenblatt–Parzen are presented. To select the optimal values of the blur coefficients of kernel functions, minimum conditions for the standard deviation of the nonparametric estimate of the probability density and the maximum of the likelihood function are used.

作者简介

A. Lapko

Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: lapko@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

V. Lapko

Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017