Studies of N-arylation of adamantane-containing amines using Chan-Lam reaction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Optimization of the conditions of the Chan-Lam reaction was carried out to obtain N -aryl derivatives of adamantane-containing amines. Under optimal conditions [2 equiv p -tolylboronic acid, 2 equiv. DBU, 0.1 M solution in MeCN, 20 mol % Cu(OAc)2·H2O, 25°C, 24 h] reactions with a series of adamantane-containing amines and diamines, differing by the steric hindrances at the amino group, were performed. Strong dependence of the amine reactivity on their structure was observed, the best yield of the monoamine derivatives reached 74% and that of diamines - 66%.

Sobre autores

D. Kuliukhina

Lomonosov Moscow State University

A. Malysheva

Lomonosov Moscow State University

A. Averin

Lomonosov Moscow State University

Email: alexaveron@yandex.ru

E. Savelyev

Volgograd State Technical University

B. Orlinson

Volgograd State Technical University

I. Novakov

Volgograd State Technical University

I. Beletskaya

Lomonosov Moscow State University

Bibliografia

  1. Chan D.M.T., Monaco K.L., Wang R.-P., Winters M.P. Tetrahedron Lett. 1998, 39, 2933-2936. doi: 10.1016/S0040-4039(98)00503-6
  2. Lam P.Y.S., Clark C.G., Saubern S., Adams J., Winters M.P., Chan D.M.T., Combs A. Tetrahedron Lett. 1998, 39, 2941-2946. doi: 10.1016/S0040-4039(98)00504-8
  3. Allen S.E., Walvoord R.R., Padilla-Salinas R., Kozlowski V.C. Chem. Rev. 2013, 113, 6234-6458. doi: 10.1021/cr300527g
  4. West M.J., Fyfe J.W.B., Vantourout J.C., Watson A.J.B. Chem. Rev. 2019, 119, 12491-12523. doi: 10.1021/acs.chemrev.9b00491
  5. Beletskaya I.P., Averin A.D. Russ. Chem. Rev. 2021, 90, 1359-1396. doi. 10.1070/RCR4999
  6. Vantourout J.C., Li L., Bendito-Moll E., Chabbra S., Arrington K., Bode B.E., Isidro-Llobet A., Kowalski J.A., Nilson M.G., Wheelhouse K.M.P., Woodard J.L., Xie S., Leitch D.C., Watson A.J.B. ACS Catal. 2018, 8, 9560-9566. doi: 10.1021/acscatal.8b03238
  7. Vantourout J.C., Law R.P., Isidro-Llobet A., Atkinson S.J., Watson A.J.B. J. Org. Chem. 2016, 81, 3942-3950. doi: 10.1021/acs.joc.6b00466
  8. Roy S., Sarma M.J., Kashyap B., Phukan P. Chem. Commun. 2016, 52, 1170-1173. doi: 10.1039/C5CC04619J
  9. King A.E., Ryland B.L., Brunold T.C., Stahl S.S. Organometallics. 2012, 31, 7948-7957. doi: 10.1021/om300586p
  10. Vantourout J.C., Miras H.N., Isidro-Llobe A., Sproules S., Watson A.J.B. J. Am. Chem. Soc. 2017, 139, 4769-4779. doi: 10.1021/jacs.6b12800
  11. Duparc V.H., Schaper F. Organometallics. 2017, 36, 3053-3060. doi: 10.1021/acs.organomet.7b00397
  12. Duparc V.H., Bano G.L., Schaper F. ACS Catal. 2018, 8, 7308-7325 10. doi 1021/acscatal.8b01881
  13. Cheng H., Song W., Nie R., Wang Y.-X., Li H.-L., Jiang X.-S., Wu J.-J., Chen C., Wu Q.-Y. Bioorg. Med. Chem. Lett. 2018, 28, 1330-1335. doi: 10.1016/j.bmcl.2018.03.014
  14. Gomaa M.S., Lim A.S.T., Lau S.C.W., Watts A.-M., Illingworth N.A., Bridgens C.F., Veal G.J., Redfern C.P.F., Brancale A., Armstrong J.L., Simons C. Bioorg. Med. Chem. 2012, 20, 6080-6088. doi: 10.1016/j.bmc.2012.08.044
  15. Imanishi M., Tomishima Y., Itou S., Hamashima H., Nakajima Y., Washizuka K., Sakurai M., Matsui S., Imamura E., Ueshima K., Yamamoto T., Yamamoto N., Ishikawa H., Nakano K., Unami N., Hamada K., Matsumura Y., Takamura F., Hattori K. J. Med. Chem. 2008, 51, 1925-1944. doi: 10.1021/jm701324c
  16. Chen Z., Kim S.-H., Barbosa S.A., Huynh T., Tortolani D.R., Leavitt K.J., Wei D.D., Manne V., Ricca C.S., Gullo-Brown J., Poss M.A., Vaccaro W., Salvati M.E. Bioorg. Med. Chem. Lett. 2006, 16, 628-632. doi: 10.1016/j.bmcl.2005.10.052
  17. Vergelli C., Schepetkin I.A., Ciciani G., Cilibrizzi A., Crocetti L., Giovannoni M.P., Guerrini G., Iacovone A., Kirpotina L.N., Khlebnikov A.I., Ye R.D., Quinn M.T. Bioorg. Med. Chem. 2016, 24, 2530-2543. doi: 10.1016/j.bmc.2016.04.019
  18. Smith A.L., D'Angelo N.D., Bo Y.Y., Booker S.K., Cee V.J., Herberich B., Hong F.-T., Jackson C.L.M., Lanman B.A., Liu L., Nishimura N., Pettus L.H., Reed A.B., Tadesse S., Tamayo N.A., Wurz R.P., Yang K., Andrews K.L., Whittington D.A., McCarter J.D., San Miguel T., Zalameda L., Jiang J., Subramanian R., Mullady E.L., Caenepeel S., Freeman D.J., Wang L., Zhang N., Wu T., Hughes R.E., Norman M.H. J. Med. Chem. 2012, 55, 5188-5219. doi: 10.1021/jm300184s
  19. Judd W.R., Slattum P.M., Hoang K.C., Bhoite L., Valppu L., Alberts G., Brown B., Roth B., Ostanin K., Huang L., Wettstein D., Richards B., Willardsen J.A. J. Med. Chem. 2011, 54, 5031-5047. doi: 10.1021/jm200249a
  20. Barlaam B., Cosulich S., Degorce S., Fitzek M., Green S., Hancox U., Lambert van der Brempt C., Lohmann J.-J., Maudet M., Morgentin R., Pasquet M.-J., Péru A., Plé P., Saleh T., Vautier M., Walker M., Ward L., Warin M. J. Med. Chem. 2015, 58, 943-962. doi: 10.1021/jm501629p
  21. Gosmini R., Nguyen V.L., Toum J., Simon C., Brusq J.-M.G., Krysa G., Mirguet O., RiouEymard A.M., Boursier E.V., Trottet L., Bamborough P., Clark H., Chung C., Cutler L., Demont E.H., Kaur R., Lewis A.J., Schilling M.B., Soden P.E., Taylor S., Walker A.L., Walker M.D., Prinjha R.K., Nicodème E. J. Med. Chem. 2014, 57, 8111-8131. doi: 10.1021/jm5010539
  22. Leovac V.M., Rodič M.V., Jovanovič L.S., Joksovič M.D., Stanojkovič T., Vujčič M., Sladič D., Markovič V., Vojinovič-Ješič L.S. Eur. J. Inorg. Chem. 2015, 2015, 882-895. doi: 10.1002/ejic.201403050
  23. Liu S., Qian P., Wan F.-X., Shi Y.-H., Jiang L. J. Chin. Chem. Soc. 2019, 66, 330-334. doi: 10.1002/jccs.201800259
  24. Kavai I., Mead L.H., Drobniak J., Zakrzewski S.F. J. Med. Chem. 1975, 18, 272-275. doi: 10.1021/jm00237a012
  25. Collins K.C., Janda K.D. Bioconjug. Chem. 2014, 25, 593-600. doi: 10.1021/bc500016k
  26. Ryu J.H., Kim S., Han H.Y., Son H.J., Lee H.J., Shin Y.A., Kim J.-S., Park H.-g. Bioorg. Med. Chem. Lett. 2015, 25, 695-700. doi: 10.1016/j.bmcl.2014.11.074
  27. Rohde J.J., Pliushchev M.A., Sorensen B.K., Wodka D., Shuai Q., Wang J., Fung S., Monzon K.M., Chiou W.J., Pan L., Deng X., Chovan L.E., Ramaiya A., Mullally M., Henry R.F., Stolarik D.F., Imade H.M., Marsh K.C., Beno D.W.A., Fey T.A., Droz B.A., Brune M.E., Camp H.S., Sham H.L., Frevert E.U., Jacobson P.B., Link J.T. J. Med. Chem. 2007, 50, 149-164. doi: 10.1021/jm0609364
  28. Sorensen B., Rohde J., Wang J., Fung S., Monzon K., Chiou W., Pan L., Deng X., Stolarik D., Frevert E.U., Jacobson P., Link J.T. Bioorg. Med. Chem. Lett. 2006, 16, 5958-5962. doi: 10.1016/j.bmcl.2006.08.129
  29. Kivitz A.J., Gutierrez-Ureña S.R., Poiley J., Genovese M.C., Kristy R., Shay K., Wang X., Garg J.P., Zubrzycka-Sienkiewicz A. Arthritis Rheumatol. 2017, 69, 709-719. doi: 10.1002/art.39955
  30. Shokova E.A., Kovalev V.V. Russ. J. Org. Chem. 2012, 48, 1007-1040. doi: 10.1134/S1070428012080015
  31. Mikolaichuk O.V., Zarubaev V.V., Muryleva A.A., Esaulkova Y.L., Spasibenko D.V., Batyrenko A.A., Kornyakov I.V., Trifonov R.E. Chem. Heterocycl. Compd. 2021, 57, 442-447. doi: 10.1007/s10593-021-02931-5
  32. Kuliukhina D.S., Yakushev A.A., Malysheva A.S., Averin A.D., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 1752-1758. doi: 10.1134/S107042802212003X
  33. Murashkina A.V., Kuliukhina D.S., Averin A.D., Abel A.S., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D., Beletskaya I.P. Mendeleev Commun. 2022, 32, 91-93. doi: 10.1016/j.mencom.2022.01.029
  34. Murashkina A.V., Averin A.D., Panchenko, S.P., Abel, A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 15-24. doi: 10.1134/S107042802201002X
  35. Fomenko V.I., Murashkina A.V., Averin A.D., Shesterkina A.A., Beletskaya I.P. Catalysts. 2023, 13, 331. doi: 10.3390/catal13020331
  36. Gopalan B., Thomas A., Shah D.M. Междунар. заявка WO 2006090244 (2006); C.A. 2006, 145, 292604.
  37. Novakov I.A., Kulev I.A., Radchenko S.S., Birznieks K.A., Boreko E.I., Vladyko G.V., Korobchenko L.V. Pharm. Chem. J. 1987, 21, 287-291. doi: 10.1007/BF007674006.
  38. Popov Yu.V., Mokhov V.M., Tankabekyan N.A. Russ. J. Appl. Chem. 2013, 86, 404-409. doi: 10.1134/S1070427213030191.
  39. Novikov S.S., Khardin A.P., Radchenko S.S., Novakov I.A., Orlinson B.S., Blinov V.F., Gorelov V.I., Zamakh V.P. Пат. 682507 (1978). СССР. C.A. 1979, 91, P193887e.
  40. Novakov I.A., Orlinson B.S., Savelyev E.N., Potaenkova E.A., Shilin A.K. Пат. RU 2495020 C1 (2013). РФ.
  41. Averin A.D., Ranyuk E.R., Golub S.L., Buryak A.K., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Synthesis. 2007, 2215-2221. doi: 10.1055/s-2007-983760
  42. Ukai T., Kawazura H., Ishii Y., Bonnet J.J., Ibers J.A. J. Organomet. Chem. 1974, 65, 253-266. doi: 10.1016/S0022-328X(00)91277-4
  43. Panchenko S.P., Abel A.S., Averin A.D., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ J. Org. Chem. 2017, 53, 1497-1504. doi: 10.1134/S1070428017100025
  44. Panchenko S.P., Abel A.S., Averin A.D., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. Chem. Bull. 2016, 65, 1550-1555. doi: 10.1007/s11172-016-1481-1

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies