Chemical properties of 3-tert-butyl-2-oxo1,2-dihydropyrrolo[1,2-b][1,2,4]triazin-6-carboxylates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Alkaline hydrolysis of 6- tert -butyl-8-ethyl-7-amino-3- tert -butyl-2-oxo-1,2-dihydropyrrolo[1,2- b ][1,2,4]triazin6,8-dicarboxylate gave the corresponding 8-carboxylic acid, treatment of which with n -BuBr or NBS/TEA led to the decarboxylation and alkylation of N1, C2O or bromination of the C8 ring position, respectively. Diazotization of 7-amino-3- tert -butyl-8-R1-2-ОR2-pyrrolo[1,2- b ][1,2,4]triazin-6-carboxylates furnished 7-azido (R1 = Br, CO2Et;R1 = H, n -Bu) and 7-unsubstituted (R1 = Br, CN; R2 = n -Bu, CH2CO2Et, CH2Boc) derivatives, and also 7-(1 H -1,2,3-triazol-1-yl)pyrrolo[1,2- b ][1,2,4]triazin-6,8-dicarboxylate. The spectral and X-Ray structural features, as well as antimicrobial activity of the synthesized compounds are considered.

Sobre autores

S. Ivanov

N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences

Email: sergey13iv1@mail.ru

D. Koltun

N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences

Email: sergey13iv1@mail.ru

N. Kolotyrkina

N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences

Email: sergey13iv1@mail.ru

Bibliografia

  1. Debnatha B., Singh W.S., Das M., Goswami S., Singh M.K., Maiti D., Manna K. Mater. Today Chem. 2018, 9, 56-72. doi: 10.1016/j.mtchem.2018.05.001
  2. Ain Q.-U., Khan H., Mubarak M.S., Pervaiz A. Front Pharmacol. 2016, 7, 292. doi: 10.3389/fphar.2016.00292
  3. Su C., Yan Y., Guo X., Luo J., Liu C., Zhang Z., Xiang W.-S., Huang S.-X. Org. Biomol. Chem. 2019, 17, 477-481. doi: 10.1039/C8OB02847H
  4. Ruanpanun P., Laatsch H., Tangchitsomkid N., Lumyong S. World J. Microbiol. Biotechnol. 2011, 27, 1373-1380. doi: 10.1007/s11274-010-0588-z
  5. Smirnov V.V., Kiprianova E.A., Garagulya A.D., Esipov S.E., Dovjenko S.A. FEMS Microbiol. Lett. 1997, 153, 357-361. doi: 10.1111/j.1574-6968.1997.tb12596.x
  6. Ivanov S.M. Comprehensive Heterocyclic Chemistry IV. Eds. D.S. Black, J. Cossy, C.V. Stevens, S.J. Gharpure. 2022, 9, 29-180. doi: 10.1016/B978-0-12-818655-8.00062-7
  7. Ott G.R., Favor D.A. Bioorg. Med. Chem. Lett. 2017, 27, 4238-4246. doi: 10.1016/j.bmcl.2017.07.073
  8. Воинков Е.К., Дрокин Р.А., Уломский Е.Н., Чупахин О.Н., Чарушин В.Н., Русинов В.Л. ХГС. 2020, 56, 1254-1273.
  9. Voinkov E.K., Drokin R.A., Ulomsky E.N., Chupakhin O.N., Charushin V.N., Rusinov V.L. Chem. Heterocycl. Compd. 2020, 56, 1254-1273. doi: 10.1007/s10593-020-02808-z
  10. Voinkov E.K., Drokin R.A., Fedotov V.V., Butorin I.I., Savateev K.V., Lyapustin D.N., Gazizov D.A., Gorbunov E.B., Slepukhin P.A., Gerasimova N.A., Evstigneeva N.P., Zilberberg N.V., Kungurov N.V., Ulomsky E.N., Rusinov V.L. ChemistrySelect. 2022, 7, e202104253. doi: 10.1002/slct.202104253
  11. Ke Z., Lu T., Liu H., Yuan H., Ran T., Zhang Y., Yao S., Xiong X., Xu J., Xu A., Chen Y. J. Mol. Struct. 2014, 1067, 127-137. doi: 10.1016/j.molstruc.2014.03.036
  12. Shi W., Qiang H., Huang D., Bi X., Huang W., Qian H. Eur. J. Med. Chem. 2018, 158, 814-831. doi: 10.1016/j.ejmech.2018.09.050
  13. Paymode D.J., Cardoso F.S.P., Agrawal T., Tomlin J.W., Cook D.W., Burns J.M., Stringham R.W., Sieber J.D., Gupton B.F., Snead D.R. Org. Lett. 2020, 22, 7656-7661. doi: 10.1021/acs.orglett.0c02848
  14. Astakhina V., Voievudskyi M., Kharchenko O., Novikov V., Komarovska-Porohnyavets E., Petukhova O. J. Heterocycl. Chem. 2016, 53, 421-428. doi: 10.1002/jhet.2204
  15. Styskala J., Slouka J., Cankar P. Heterocycles. 2008, 75, 1087-1095. doi: 10.3987/COM-07-11267
  16. Ivanov S.M. Tetrahedron Lett. 2020, 61, 152404. doi: 10.1016/j.tetlet.2020.152404
  17. Иванов C.М., Тужаров Е.И., Колотыркина Н.Г. ЖОХ. 2021, 91, 1944-1953.
  18. Ivanov S.M., Tuzharov Е.I., Kolotyrkina N.G. Russ. J. Gen. Chem. 2021, 91, 2453-2461. doi: 10.1134/S1070363221120148
  19. Миронович Л.М., Костина М.В. ХГС. 2011, 47, 1555-1559.
  20. Mironovich L.M., Kostina M.V. Chem. Heterocycl. Compd. 2012, 47, 1286-1289. doi: 10.1007/s10593-012-0904-7
  21. Иванов C.М., Миронович Л.М., Родиновская Л.А., Шестопалов А.М. Изв. АН. Сер. Хим. 2017, 66, 727-731.
  22. Ivanov S.M., Mironovich L.M., Rodinovskaya L.A., Shestopalov A.M. Russ. Chem. Bull. 2017, 66, 727-731. doi: 10.1007/s11172-017-1801-0
  23. Parrino B., Spano V., Carbone A., Montalbano A., Barraja P., Matyus P., Cirrincione G., Diana P. Tetrahedron 2014, 70, 7318-7321. doi: 10.1016/j.tet.2014.07.051
  24. Cirrincione G., Almerico A.M., Aiello E., Dattolo G. Chem. Heterocycl. Compd. Eds. E.C. Taylor, A. Weissberger. 1992, 48, 299-523. doi: 10.1002/9780470187340.ch3
  25. Ho Z.-C., Livant P., Lott W.B., Webb T.R. J. Org. Chem. 1999, 64, 8226-8235. doi: 10.1021/jo9909608
  26. Truce W.E., Kruse R.B. J. Am. Chem. Soc. 1959, 81, 5372-5374. doi: 10.1021/ja01529a030
  27. Методические указания МУК 4.2.1890-04. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. 91.
  28. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9, Clinical and Laboratory Standards Institute, USA, 2012.
  29. СLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi, Approved Standard, 2nd ed., CLSI document M38-A2, USA, 2008.
  30. Bruker. APEX-III. Bruker AXS Inc., Madison, 2018.
  31. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. J. Appl. Crystallogr. 2015, 48, 3-10. doi: 10.1107/S1600576714022985
  32. Sheldrick G.M. Acta Crystallogr., Sect. A. 2015, 71, 3-8. doi: 10.1107/S2053273314026370
  33. Sheldrick G.M. Acta Crystallogr., Sect. C. 2015, 71, 3-8. doi: 10.1107/S2053229614024218

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies