Synthesis of new macrocyclic triperoxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An efficient method has been developed for the synthesis of dialkyl hexaoxadispiroalkanedicarboxylates by the recyclization reaction of heptaoxadispiroalkanes with alkyl malonates (malonic acid dimethyl ester, malonic acid diethyl ester, malonic acid diisopropyl ester) under the action of lanthanide catalysts.

Sobre autores

N. Makhmudiyarova

Institute of Petrochemistry and Catalysis UFIC RAS

Email: natali-mnn@mail.ru

I. Ishmukhametova

Institute of Petrochemistry and Catalysis UFIC RAS

Email: natali-mnn@mail.ru

Bibliografia

  1. Jones C.W. Applications of Hydrogen Peroxides and Derivatives. Cambridge: Royal Society of Chemistry, 1999.
  2. The Chemistry of Peroxides. Ed. S. Patai. New York: Wiley, 1983.
  3. Organic Peroxides. Ed. W. Ando. New York: Wiley, 1992.
  4. Peroxide Chemistry:Mechanistic and Preparative Aspects of Oxygen Transfer. Ed. W. Adam. Weinheim: Wiley-VCH, 2000.
  5. Catalytic Oxidations with Hydrogen Peroxide as Oxidant. Ed. G. Strukul. Boston: Kluwer Academic Publishers. 1992.
  6. Efferth T. Biotechnol. Adv. 2018, 36, 1730-1737. doi: 10.1016/j.biotechadv.2018.01.001
  7. Solaja B.A., Terzic N., Pocsfalvi G., Gerena L., Tinant B., Opsenica D., Milhous W.K. J. Med. Chem. 2002, 45, 3331-3336. doi: 10.1021/jm020891g
  8. D'Alessandro S., Scaccabarozzi D., Signorini L., Perego F., Ilboudo D.P., Ferrante P., Delbue S. Microorganisms. 2020, 8, 1-26. doi: 10.3390/microorganisms8010085
  9. Efferth T., Romero M.R., Wolf D.G., Stamminger T., Marin J.J.G., Marschall M. Clin. Infect. Dis. 2008, 47, 804-811. doi: 10.1086/591195
  10. Frohlich T., Reiter C., Saeed M. E.M., Hutterer C., Hahn F., Leidenberger M., Friedrich O., Kappes B., Marschall M., Efferth T., Tsogoeva S.B. ACS Med. Chem. Lett. 2018, 9, 1-7. doi: 10.1021/acsmedchemlett.7b00412
  11. Ghorai P., Dussault P.H., Hu C. Org. Lett. 2008, 10, 2401-2404. doi: 10.1021/ol800657m
  12. Wang X., Dong Y., Wittlin S., Charman S.A., Chiu F.C.K., Chollet J., Katneni K., Mannila J., Morizzi J., Ryan E., Scheurer C., Steuten J., Santo Tomas J., Snyder C., Vennerstrom J.L. J. Med. Chem. 2013, 56, 2547-2555. doi: 10.1021/jm400004u
  13. Ingram K., Yaremenko I.A., Krylov I.B., Hofer L., Terent'ev A.O., Keiser J. J. Med. Chem. 2012, 55, 8700-8711. doi: 10.1021/jm3009184
  14. Cowan N., Yaremenko I.A., Krylov I.B., Terent'ev A.O., Keiser J. Biorg. Med. Chem. 2015, 23, 5175-5181. doi: 10.1016/j.bmc.2015.02.010
  15. Brecht K., Kirchhofer C., Bouitbir J., Trapani F., Keiser J., Krahenbuhl S. Int. J. Mol. Sci. 2019, 20, 4880-4895. doi: 10.3390/ijms20194880
  16. Wu J.B., Wang X.F., Chiu F.C.K., Haberli C., Shackleford D.M., Ryan E., Kamaraj S., Bulbule V.J., Wallick A.I., Dong Y.X., White K.L., Davis P.H., Charman S.A., Keiser J., Vennerstrom J.L. J. Med. Chem. 2020, 63, 3723-3736. doi: 10.1021/acs.jmedchem.0c00069
  17. Fisher L.C., Blackie M.A.L. Mini-Rev. Med. Chem. 2014, 14, 123-135. doi: 10.2174/1389557514666140123144942
  18. Hao H.D., Wittlin S., Wu Y.K. Chem. Eur. J. 2013, 19, 23, 7605-7619. doi: 10.1002/chem.201300076
  19. Jefford C.W. Curr. Top. Med. Chem. 2012, 12, 373-399. doi: 10.2174/156802612799362940
  20. Keiser J., Ingram K., Vargas M., Chollet J., Wang X.F., Dong Y.X., Vennerstrom J.L. Antimicrob. Agents Chemother. 2012, 56, 1090-1092. doi: 10.1128/AAC.05371-11
  21. Kuster T., Kriegel N., Stadelmann B., Wang X.F., Dong Y.X., Vennerstrom J.L., Keiser J., Hemphill A. Int. J. Antimicrob. Agents. 2014, 43, 40-46. doi: 10.1016/j.ijantimicag.2013.09.012
  22. Vil' V.A., Yaremenko I.A., Ilovaisky A.I., Terent'ev A.O. Molecules. 2017, 22, 1881. doi: 10.3390/molecules22111881
  23. Coghi P., Yaremenko I.A., Prommana P., Radulov P.S., Syroeshkin M.A., Wu Y.J., Gao J.Y., Gordillo F.M., Mok S., Wong V.K.W., Uthaipibull C., Terent'ev A.O. Chem. Med. Chem. 2018, 13, 902-908. doi: 10.1002/cmdc.201700804
  24. Yaremenko I.A., Coghi P., Prommana P., Qiu C.L., Radulov P.S., Qu Y.Q., Belyakova Y.Y., Zanforlin E., Kokorekin V.A., Wu Y.Y.J., Fleury F., Uthaipibull C., Wong V.K.W., Terent'ev A.O. Chem. Med. Chem. 2020, 15, 1118-1127. doi: 10.1002/cmdc.202000042
  25. Brautigam M., Teusch N., Schenk T., Sheikh M., Aricioglu R.Z., Borowski S.H., Neudorfl J.M., Baumann U., Griesbeck A.G., Pietsch M. Chem. Med. Chem. 2015, 10, 629-639. doi: 10.1002/cmdc.201402553
  26. Abrams R.P., Carroll W.L., Woerpel K.A. ACS Chem. Biol. 2016, 11, 1305-1312. doi: 10.1021/acschembio.5b00900
  27. Chaudhari M.B., Moorthy S., Patil S., Bisht G.S., Mohamed H., Basu S., Gnanaprakasam B. J. Org. Chem. 2018, 83, 1358-1368. doi: 10.1021/acs.joc.7b02854
  28. Dwivedi A., Mazumder A., du Plessis L., du Preez J.L., Haynes R.K., du Plessis J. Nanomed. Nanotechnol. Bio. Med. 2015, 11, 2041-2050. doi: 10.1016/j.nano.2015.07.010
  29. Chaudhary S., Sharma V., Jaiswal P.K., Gaikwad A.N., Sinha S.K., Puri S.K., Sharon A., Maulik P.R., Chaturvedi V. Org. Lett. 2015, 17, 4948-4951. doi: 10.1021/acs.orglett.5b02296
  30. Miller M.J., Walz A.J., Zhu H., Wu C.R., Moraski G., Mollmann U., Tristani E.M., Crumbliss A.L., Ferdig M.T., Checkley L., Edwards R.L., Boshoff H.I. J. Am. Chem. Soc. 2011, 133, 2076-2079. doi: 10.1021/ja109665t
  31. Zhou F.W., Lei H.S., Fan L., Jiang L., Liu J., Peng X.M., Xu X.R., Chen L., Zhou C.H., Zou Y.Y., Liu C.P., He Z Q., Yang D.C. Bioorg. Med. Chem. Lett., 2014, 24, 1912-1917. doi: 10.1016/j.bmcl.2014.03.010
  32. Cusati R.C., Barbosa L.C.A., Maltha C.R.A., Demuner A.J., Oliveros-Bastidas A., Silva A.A. Pest Manage. Sci. 2015, 71, 1037-1048. doi: 10.1002/ps.3891
  33. Barbosa L.C.A., Maltha C.R.A., Cusati R.C., Teixeira R.R., Rodrigues F.F., Silva A.A., Drew M.G.B., Ismail F.M.D. J. Agric. Food Chem. 2009, 57, 10107-10115. doi: 10.1021/jf902540z
  34. Yaremenko I.A., Radulov P.S., Belyakova Y.Y., Demina A.A., Fomenkov D.I., Barsukov D.V., Subbotina I.R., Fleury F., Terent'ev A.O. Chem. Eur. J. 2020, 26, 4734-4751. doi: 10.1002/chem.201904555
  35. Yaremenko I.A., Syromyatnikov M.Y., Radulov P.S., Belyakova Y.Y., Fomenkov D.I., Popov V.N., Terent'ev A.O. Molecules. 2020, 25, 1924. doi: 10.3390/molecules25081954
  36. Casteel D.A., Nat. Prod. Rep. 1992, 9, 289-312. doi: 10.1039/NP9920900289
  37. Makhmudiyarova N.N., Khatmullina G.M., Rakhimov R.Sh., Ibragimov A.G., Dzhemilev U.M. Arkivoc. 2016, v, 427-433. doi: 10.24820/ark.5550190.p009.565
  38. Makhmudiyarova N.N., Ishmukhametova I.R., Tyumkina T.V., Ibragimov A.G., Dzhemilev U.M. Tetrahedron Lett. 2018, 59, 3161-3164. doi: 10.1016/j.tetlet.2018.07.010
  39. Kim H.-S., Nagai N., Ono K., Begum K., Wataya Y., Hamada Y., Tsuchiya K., Masuyama A., Nojima M., McCullough K.J. J. Med. Chem. 2001, 44, 2357-2361. doi: 10.1021/jm010026g
  40. Terent'ev A.O., Platonov M.M., Tursina A.I., Chernyshev V.V., Nikishin G.I. J. Org. Chem. 2008, 73, 3169-3174. doi: 10.1021/jo7027213
  41. Arzumanyan A.V., Novikov R.A., Tetrnt'ev A.O., Platonov M.M., Lakhtin V.G., Arkhipov D.E., Korlyukov A.A., Chernyshev V.V., Fitch A.N., Zdvizhkov A.T., Krylov I.B., Tomilov Y.V., Nikishin G.I. Organometallics. 2014, 33, 2230-2247. doi: 10.1021/om500095x
  42. Arzumanyan A.V., Tetrnt'ev A.O., Novikov R.A., Lakhtin V.G., Chernyshev V.V., Fitch A.N., Nikishin G.I. Eur. J. Org. Chem. 2014, 6877-6883. doi: 10.1002/ejoc.201402895
  43. Махмудиярова Н.Н., Рахимов Р.Ш., Тюмкина Т.В., Мещерякова Е.С., Ибрагимов А.Г., Джемилев У.М. ЖОрХ. 2019, 5, 713-728. doi: 10.1134/s1070428019050075
  44. Махмудиярова Н.Н., Шангараев К.Р., Мещерякова E.С., Тюмкина T.В., Ибрагимов А.Г., Джемилев У.М. ХГС. 2019, 55, 1111-1119. doi: 10.1007/s10593-019-02586-3
  45. Makhmudiyarova N.N., Ishmukhametova I.R., Shangaraev K.R., Dzhemileva L.U., D'yakonov V.A., Ibragimov A.G., Dzhemilev U.M. New J. Chem. 2021, 45, 2069-2077. doi: 10.1039/d0nj05511e
  46. Makhmudiyarova N.N., Khatmullina G.M., Rakhimov R.Sh., Meshcheryakova E.S., Ibragimov A.G., Dzhemilev U.M. Tetrahedron. 2016, 72, 3277-3281. doi: 10.1016/j.tet.2016.04.055
  47. Tyumkina T.V., Makhmudiyarova N.N., Kiyamutdinova G.M., Meshcheryakova E.S., Bikmukhametov K.Sh., Abdullin M.F., Khalilov L.M., Ibragimov A.G., Dzhemilev U.M. Tetrahedron. 2018, 74, 1749-1758. doi: 10.1016/j.tet.2018.01.045
  48. Makhmudiyarova N.N., Ishmukhametova I.R., Dzhemileva L.U., Tyumkina T.V., D'yakonov V.A., Ibragimov A.G., Dzhemilev U.M. RSC Adv. 2019, 9, 18923. doi: 10.1039/c9ra02950h
  49. Makhmudiyarova N.N., Ishmukhametova I.R., Dzhemileva L.U., D'yakonov V.A., Ibragimov AG., Dzhemilev U.M. Molecules. 2020, 25, 1874-18929. doi: 10.3390/molecules25081874
  50. Махмудиярова Н.Н., Ишмухаметова И.Р., Джемилева Л.У., Дьяконов В.А., Ибрагимов А.Г., Джемилев У.М. ЖОрХ. 2020, 56, 746-752. doi: 10.1134/s1070428020050115
  51. Махмудиярова Н.Н., Ишмухаметова И.Р., Ибрагимов А.Г., Джемилев У.М. Докл. Акад. Наук. 2020, 491, 93-100. doi: 10.31857/S2686953520040044
  52. Махмудиярова Н.Н., Королева Л.С., Мещерякова Е.С., Ибрагимов А.Г. ЖОрХ. 2020, 3, 360-367. doi: 10.1134/s1070428020030021
  53. Пацак Й. Органическая химия. М.: Мир, 1986.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies