A New Method for Constructing Aryl-Substituted 3,3,4-Trihydroxy-2,3,4-Tetrahydrobenzimidazo[2,1-b][1,3]Thiazin-5-ium Salts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By the reaction of acetal- containing chloroxyranes and - chloroketones with N-ethyl-2-mercaptobenzimidazole in a 95% ethanol solution using microwave irradiation, a new preparative method for the synthesis of previously undescribed 3,3,4-trihydroxybenzimidazo[2,1-b][1,3]thiazinium salts with high yields up to 93%, of interest to medicinal chemistry, has been developed.

Sobre autores

F. Guseinov

Kosygin State University of Russia; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: guseinoveltos@mail.ru
ORCID ID: 0000-0002-6769-0232
Moscow, Russia

L. Kustov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0000-0003-2312-3583
Moscow, Russia

K. Afanasyeva

Kosygin State University of Russia; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0009-0007-3729-921X
Moscow, Russia

E. Shuvalova

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0000-0002-2657-7735
Moscow, Russia

K. Kobrakov

Kosygin State University of Russia; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0000-0001-8940-0112
Moscow, Russia

Yu. Selyakin

MIREA-Russian Technology University (Lomonosov Institute of Fine Chemical Technology)

ORCID ID: 0000-0002-7027-378X
Moscow, Russia

A. Stepanov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0009-0007-1797-2833
Moscow, Russia

A. Samigullina

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID ID: 0000-0002-6791-9973
Moscow, Russia

Bibliografia

  1. Tariq S., Rahim, Ullah H.F., Sarfraz M., Hussain R., Khan S., Khan M.U., Rehman W., Hussain A., Bhat M.A., Farooqi M., Shah S., Iqbal N. Pharmaceuticals. 2024, 17, 410–431. https://doi.org/10.3390/ph17040410
  2. Naz H., Othman M., Rahim F., Hussain R., Khan S., Taha M., Hafez M., Abdel-Hafez L., Ullah H., Khan I., Khan Y., Shah S.A.A. J. Mol. Struct. 2024, 1312, 138592–138614. https://doi.org/10.1016/j.molstruc.2024.138592
  3. Hussain R., Ashraf M., Khan S., Rahim F., Rehman W., Taha M., Sardar A., Khan Y., Khan I., Shah S.A.A. J. Mol. Struct. 2024, 1295, 136582–136597. https://doi.org/10.1016/j.molstruc.2023.136582
  4. Barcin T., Yucel M.A., Ersan R.H., Alagoz M.A., Dogen A., Burmaoglu S., Algul O. J. Mol. Struct. 2024, 1295, 136668–136680. https://doi.org/10.1016/j.molstruc.2023.136668
  5. Dampalla C.S., Miller M.J., Kim Y., Zabiegala A., Nguyen H.N., Madden T.K., Thurman H., Machen A.J., Cooper A., Liu L., Battaille K.P., Lovell S., Chang K.-O., Groutas W.C. Eur. J. Med. Chem. 2023, 254, 115376–115394. https://doi.org/10.1016/j.ejmech.2023.115376
  6. Zaręba P., Drabczyk A. K., Wnorowska S., Wnorowski A., Jaśkowska J. Bioorg. Chem. 2023, 139, 106730–106744. https://doi.org/10.1016/j.bioorg.2023.106730
  7. Du K., Wang X., Bai Y., Zhang X., Xue J., Li S., Xie Y., Sang Z., Tang Y., Wang X. Eur. J. Med. Chem. 2024, 271, 116402–116421. https://doi.org/10.1016/j.ejmech.2024.116402
  8. Noor A., Qazi N.G., Nadeem H., Khan A.-U., Paracha R.Z., Ali F., Saeed A. Chem. Cent. J. 2017, 11, 1–13. https://doi.org/10.1186/s13065-017-0314-0
  9. Gangula S., Elati C.R., Neredla A., Baddam S.R., Neelam U.K., Bandichhor R., Dongamanti A. Org. Proc. Res. Dev. 2010, 14, 229–233. https://doi.org/10.1021/op900258b
  10. Deswal L., Verma V., Kirar J.S., Kumar D., Deswal Y., Kumar A., Bhatia M. Res. Chem. Intermed. 2023, 49, 1059–1083. https://doi.org/10.1007/s11164-022-04921-4
  11. Sharaf M., Moustafa A.H., Obaid R.J., Alzahrani A.Y., Aboelez M.O., Elkady H., Alenazi N.A., Mohamed M.A.A., Al-Fahemi J.H., Moussa Z., Omran O.A., Ahmed S.A. J. Mol. Struct. 2024, 1295, 136708–136724. https://doi.org/10.1016/j.molstruc.2023.136708
  12. Meduri B., Pavan S.R., Prabhu A., Shankaranarayana A.H., Sethu A.K., Singh M., Pujar K.G., Siddappa R.S., Bidye D., Pujar G.V. J. Mol. Struct. 2024, 1295, 136672–136685. https://doi.org/10.1016/j.molstruc.2023.136672
  13. Akbarzadeh M., Bakavoli M., Eshghi H., Shiri A. J. Chem. Res. 2017, 41, 730–733. https://doi.org/10.3184/174751917X15132496997778
  14. Eldeha W.M., El Hassab M.A., Abo-Ashour M.F., Al-Warhi T., Elaasser M.M., Safwat N.A., Suliman H., Ahmed M.F., Al-Rashood S.T., Abdel-Aziz H.A., El-Haggar R. Bioorg. Chem. 2021, 110, 104748–104761. https://doi.org/10.1016/j.bioorg.2021.104748
  15. Ersan R.H., Alagoz M.A., Erran-Bolelli T., Duran N., Burmaoglu S., Algul O. Mol. Div. 2021, 25, 2247–2259. https://doi.org/10.1007/s11030-020-10115-0
  16. Chen W.L., Chen X., Guo X. K., Jiang Z. Y., Li D.D., Wang Y.Z., Xu J.J., You Q.D. Eur. J. Med. Chem. 2020, 188, 112027–112033. https://doi.org/10.1016/j.ejmech.2019.112027
  17. Jiang L., Peng P., Yu L., Jiang D., Wang Y., Li H., Yuan M., Yuan M. Tetrahedron. 2021, 98, 132430–132439. https://doi.org/10.1016/j.tet.2021.132430
  18. Abele E., Abele R., Arsenyan P., Belyakov S., Veiveris M., Lukevics E. Chem. Heterocycl. Compd. 2007, 43, 220–224. https://doi.org/10.1007/s10593-007-0034-9
  19. Goni L.K., Jafar Mazumder M.A., Quraishi M.A., Mizanur Rahman M. Chem. Asian J. 2021, 16, 1324–1364. https://doi.org/10.1002/asia.202100201
  20. Batooie N., Khodaei M.M., Bahrami K., Miraghaee S.S., Hosseinzadeh N., Sajadimajad S. J. Molec. Struct. 2023, 1271, 134037–134044. https://doi.org/10.1016/j.molstruc.2022.134037
  21. He Z.Q., Chen S.J., Chen G.S., Lin J.H., Wu J.M., Liu Y. L. J. Org. Chem. 2023, 88, 13262–13271. https://doi.org/10.1021/acs.joc.3c01570
  22. Jing-Xu G., Ya H., Zhen-Lin C., Yue-Wei G. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 1036–1041. https://doi.org/10.1080/10426507.2015.1135149
  23. Galal S.A., Naem S.I.E., Nezhawy A.O.E., Ali M.A., Diwani H.I.E. Arch. Pharm. Chem. Life Sci. 2011, 11, 255–263. https://doi.org/10.1002/ardp.201000252
  24. Guseinov F.I., Movsumzade E.M., Kustov L.M., Malinnikov V.M., Pistov M.F., Lavrova O.M. Mendeleev Commun. 2020, 5, 674–675. https://doi.org/10.1016/j.mencom.2020.09.041
  25. Гусейнов Ф.И., Бурангулова Р.Н., Мухамедзянова Е.Ф., Струнин Б.П., Синяшин О.Г., Литвинов И.А., Губайдуллин А.Т. Химия гетероциклических соединений. 2006, 7, 943–947.
  26. Guseinov F.I., Pistov M.F., Movsumzade E.M., Kustov L.M., Tafeenko V. A., Chernyshev V.V., Pombeiro A.J. Crystals. 2017, 11, 327–335. https://doi.org/10.3390/cryst7100327
  27. Guseinov F.I., Ovsyannikov V.O., Shuvalova E.V., Samigullina A.I., Mahmudov K.T. New J. Chem. 2024, 48, 12869–12872. https://doi.org/10.1039/D4NJ01789G
  28. Гусейнов Ф.И., Тагиев С.Ш. Журнал органической химии. 1995, 31, 86–89.
  29. Гусейнов Ф.И., Юдина Н.А. Химия гетероциклических соединений. 1998, 34, 115–120.
  30. Dubey T., Kate P., Karale R., Sawale V. Int. J. Pharm. Sci. 2024, 2, 10–20. https://doi.org/10.5281/zenodo.11409656
  31. Adhikari A., Bhakta S., Ghosh T. Tetrahedron. 2022, 126, 133085–133109. https://doi.org/10.1016/j.tet.2022.133085
  32. Henary M., Kananda C., Rotolo L., Savino B., Owens E.A., Cravotto G. RSC Adv. 2020, 10, 14170–14197. https://doi.org/10.1039/D0RA01378A
  33. Amrutkar S.V., Chikhale H.U., Dandagavhal K.R., Mali D. R. Int. J. ChemTech Res. 2017, 10, 305–310.
  34. Jiang L., Peng P., Yu L., Jiang D., Wang Y., Li H., Yuan M., Yuan M. Tetrahedron. 2021, 98, 132430–132439. https://doi.org/10.1016/j.tet.2021.132430
  35. Kumar R., Nair R.R., Prakash R., Bae T., Dohi T., Prakash O. Letters in Organic Chemistry. 2024, 21, 209–212. https://doi.org/10.2174/1570178620666230803123511
  36. Misiunaitė I., Bukšnaitienė R., Pošiūnas J., Brukštus A., Žutautė I. J. Heterocycl. Chem. 2022, 59, 1712–1722. https://doi.org/10.1002/jhet.4499
  37. Saliyeva L.M., Slyvka N.Y., Korotkykh M.I., Vovk M.V. Chem. Heterocycl. Compd. 2023, 59, 368–385. https://doi.org/10.1007/s10593-023-03206-x
  38. Nguyen P.H., Hue B.T., Pham M.Q., Hoa T.P., Tran Q. De, Jung H., Hieu L.T., Quoc N.C., Quan H.V., Quy N.P., Yoo H.J., Yang S.G. New J. Chem. 2023, 47, 7622–7633.
  39. Allen F.H., Кennard O., Watson D.G., Brammer L., Orpen A.G., Тaylor R.J. Chem. Soc., Perkin Тrans. 1987, 2, S1–S19. https://doi.org/10.1039/P298700000S1
  40. CrysAlisPro. Version 1.171.41.106a. Rigaku Oxford Diffraction, 2021.
  41. Sheldrick G.M. Acta Cryst. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370
  42. Sheldrick G.M. Acta Cryst. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218
  43. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K. J. Appl. Cryst. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726
  44. Macrae C.F., Sovago I., Cottrell S.J., Galek P.T., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. J. Appl. Cryst. 2020, 53, 226–235. https://doi.org/10.1107/S1600576719014092

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).