A New Approach to (2,2'-bi)Pyridines with (Triptycene-2-yl)Amine Moiety

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An effective synthetic approach to (2,2'-bi)pyridines having a fragment of ((9r,10r)-9,10-dihydro-9,10-[1,2]benzenoanthracene-2-yl)amine ((tryptycene-2-yl)amine) in the alpha position via their 1,2,4-triazine precursors has been proposed; the synthesis was made as a result of the nucleophilic ipso substitution of the cyano group at the C5 position of 3-(2-pyridyl)-1,2,4-triazines and the subsequent Bodger reaction with 2,5-norbornadiene.

About the authors

S. S Potapova

Ural Federal University named after the first President of Russia B.N. Yeltsin; Postovsky Institute of Organic Synthesis, UB, RAS

Email: sveta.rybakova.2000@mail.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

M. I Valieva

Ural Federal University named after the first President of Russia B.N. Yeltsin; Postovsky Institute of Organic Synthesis, UB, RAS

Yekaterinburg, Russia; Yekaterinburg, Russia

E. A Kudryashova

Ural Federal University named after the first President of Russia B.N. Yeltsin

Yekaterinburg, Russia

D. S Kopchuk

Ural Federal University named after the first President of Russia B.N. Yeltsin; Postovsky Institute of Organic Synthesis, UB, RAS

Yekaterinburg, Russia; Yekaterinburg, Russia

Т. А. Pospelovaa

Ural Federal University named after the first President of Russia B.N. Yeltsin

Yekaterinburg, Russia

G. V Zyryanov

Ural Federal University named after the first President of Russia B.N. Yeltsin; Postovsky Institute of Organic Synthesis, UB, RAS

Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. McGlinchey M.J., Nikitin K., Molecules. 2020, 25, 1950. https://doi.org/10.3390/molecules25081950
  2. Hu L., Mahaut D., Tumanov N., Wouters J., Robiette R., Berionni G., J. Org. Chem. 2019, 84, 11268–11274. https://doi.org/10.1021/acs.joc.9b01570
  3. Han Y., Meng Z., Chen C.F., Chem. Commun. 2016, 52 (3), 590–593. https://doi.org/10.1039/C5CC08166A
  4. Beaudoin D., Rominger F., Mastalerz M., Chem. Int. Ed. 2014, 53, 5126–5130. https://doi.org/10.1002/anie.201609073
  5. Ma Y.X., Han Y., Chen C.F., J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 261–281. https://doi.org/10.1007/s10847-013-0372-4
  6. Zhang G., Rominger F., Mastalerz M., Cryst. Growth Des. 2016, 16, 5542–5548. https://doi.org/10.1021/acs.cgd.6b01014
  7. Cohen O., Grossman O., Vaccaro L., Gelman D., J. Organomet. Chem. 2014, 750, 13–16. https://doi.org/10.1016/j.jorganchem.2013.10.051
  8. Perchellet E.M., Wang Y., Weber R.L., Lou K., Hua D.H., Perchellet J.P.H., Anticancer Drugs. 2004, 15, 929–946. https://doi.org/10.1097/00001813-200411000-00002
  9. Ratajczyk T., Czerski I., Szymański S., J. Phys. Chem. A. 2008, 112, 8612–8616. https://doi.org/10.1021/jp8053394
  10. Peurifoy S.R., Castro E., Liu F., Zhu X.Y., Ng F., Jockusch S., Steigerwald M., Echegoyen L., Nuckolls C., Sisto T.J., J. Am. Chem. Soc. 2018, 140, 9341–9345. https://doi.org/10.1021/jacs.8b04119
  11. Ishiwari F., Nascimbeni G., Sauter E., Tago H., Shoji Y., Fujii S., Kiguchi M., Tada T., Zharnikov M., Zojer E., Fukushima T., J. Am. Chem. Soc. 2019, 141, 5995–6005. https://doi.org/10.1021/jacs.9b00950
  12. Xue M., Chen C.F., Org. Lett. 2009, 11 (22), 5294–5297. https://doi.org/10.1021/ol902246c
  13. Chen C., Tan K., Li M., Патент CN116332769 A, 2023, China.
  14. Huang J., Zeng L., Патент CN115340515 A, 2021, China.
  15. Wei D., Ye Y., Zheng P., Liu F., Ding H., Zou Q., Xu B., Tang L., Xu X., Wang C., Wang R., Ran X., Chen Z., Патент CN116621716 A, 2023, China.
  16. Prokhorov A.M., Kozhevnikov D.N., Chem. Heterocycl. Compd. 2012, 48 (8), 1153–1176. https://doi.org/10.1007/s10593-012-1117-9
  17. Zhang F.G., Chen Z., Tang X., Ma J.A., Chem. Rev. 2021, 121 (23), 14555–14593. https://doi.org/10.1021/ac-s.chemrev.1c00611
  18. Kopchuk D.S., Krinochkin A.P., Starnovskaya E.S., Shtaitz Y.K., Khasanov A.F., Taniya O.S., Santra S., Zyryanov G.V., Majee A., Rusinov V.L., Chupakhin O.N., ChemistrySelect. 2018, 3, 4141–4146. https://doi.org/10.1002/slct.201800220
  19. Krinochkin A.P., Shtaitz Y.K., Rammohan A., Buto-rin I.I., Savchuk M.I., Khalymbadzha I., Kopchuk D.S., Slepukhin P.A., Melekhin V.V., Shcheglova A.V., Zyryanov G.V., Chupakhin O.N., Eur. J. Org. Chem. 2022, 2022 (22), e202200227. https://doi.org/10.1002/ejoc.202200227
  20. Kunz A., Oberhof N., Scherz F., Martins L., Dreuw A., Wegner H.A., Chem. Eur. J. 2022, 28 (38), e202200972. https://doi.org/10.1002/chem.202200972
  21. Kozhevnikov V.N., Kozhevnikov D.N., Nikitina T.V., Rusinov V.L., Chupakhin O.N., J. Org. Chem. 2003, 68 (7), 2882–2888. https://doi.org/10.1021/jo0267955
  22. Cheng L., Xu Z., Xiong X.Q., Wang J.X., Jing B., Chin. J. Polym. Sci. 2010, 28 (1), 69–76. https://doi.org/10.1007/s10118-010-8192-0
  23. Preda G., Mobili R., Ravelli D., Amendola V., Pasini D., J. Org. Chem. 2024, 89 (8), 5690–5698. https://doi.org/10.1021/acs.joc.4c00221

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).