Photocatalytic Fluoroalkylation of Derivatives of 3-Aminopyrazole

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of 3-aminopyrazole derivatives with pentafluoroethyl iodide in the presence of a ruthenium photocatalyst under irradiation with blue light is described. 3-Aminopyrazoles containing a substituent at positions 4 or 5 gave the corresponding fluoroalkylation products. In the case of N-Boc derivatives of 3-aminopyrazole, the selectivity of radical fluoroalkylation depends on the nature of the structure of the N-Boc pyrazole.

About the authors

D. S. Koltun

N.D. Zelinsky Institute of Organic Chemistry

Moscow, Russia

V. V. Levin

N.D. Zelinsky Institute of Organic Chemistry

Moscow, Russia

A. D. Dilman

N.D. Zelinsky Institute of Organic Chemistry

Email: dilman@ioc.ac.ru
Moscow, Russia

References

  1. Inoue M., Sumii Y., Shibata N., ACS Omega, 2020, 5, 10633–10640. https://doi.org/10.1021/acsomega.0c00830
  2. Ogawa Y., Tokunaga E., Kobayashi O., Hirai K., Shibata N., iScience, 2020, 23, 101467. https://doi.org/10.1016/j.isci.2020.101467
  3. Nenajdenko V., Fluorine in Heterocyclic Chemistry. Springer International Publishing: Cham, Switzerland, 2014; Vol. 1 and 2.
  4. Han J., Remete A.M., Dobson L.S., Kiss L., Izawa K., Moriwaki H., Soloshonok V.A., O'Hagan D., J. Fluorine Chem., 2020, 239, 109639. https://doi.org/10.1016/j.jfluchem.2020.109639
  5. Johnson B.M., Shu Y.-Z., Zhuo X., Meanwell N.A., J. Med. Chem., 2020, 63, 6315–6386. https://doi.org/10.1021/acs.jmedchem.9b01877
  6. Pankov R.O., Prima D.O., Ananikov V.P., Coord. Chem. Rev., 2024, 516, 215897. https://doi.org/10.1016/j.ccr.2024.215897
  7. Schmidt A., Dreger A., Curr. Org. Chem., 2011, 15, 1423–1463. https://doi.org/10.2174/138527211795378263
  8. Giornal F., Pazenok S., Rodefeld L., Lui N., Vors J.-P., Leroux F.R., J. Fluorine Chem., 2013, 152, 2–11. https://doi.org/10.1016/j.jfluchem.2012.11.008
  9. Mykhailiuk P.K., Chem. Rev., 2021, 121, 1670–1715. https://doi.org/10.1021/acs.chemrev.0c01015
  10. Penning T.D., Talley J.J., Bertenshaw S.R., Carter J.S., Collins P.W., Docter S., Graneto M.J., Lee L.F., Malecha J.W., Miyashiro J.M., Rogers R.S., Rogier D.J., Yu S.S., Anderson G.D., Burton E.G., Cogburn J.N., Gregory S.A., Koboldt C.M., Per-kins W.E., Seibert K., Veenhuizen A.W., Zhang Y.Y., Isakson P.C., J. Med. Chem., 1997, 40, 1347–1365. https://doi.org/10.1021/jm960803q
  11. Duarte Hospital C., Tête A., Debizet K., Imler J., Tomkiewicz-Raulet C., Blanc E.B., Barouki R., Coumoul X., Bortoli S., Environ. Int., 2023, 180, 108219. https://doi.org/10.1016/j.envint.2023.108219
  12. Dias H.V.R., Lovely C.J., Chem. Rev., 2008, 108, 3223–3238. https://doi.org/10.1021/cr078362d
  13. Mykhailiuk P.K., Ishchenko A.Y., Stepanenko V., Cossy J., Eur. J. Org. Chem., 2016, 2016, 5485–5493. https://doi.org/10.1002/ejoc.201600947
  14. Voronin V.V., Ledovskaya M.S., Gordeev E.G., Rodygin K.S., Ananikov V.P., J. Org. Chem., 2018, 83, 3819–3828. https://doi.org/10.1021/acs.joc.8b00155
  15. Vetrov D.E., Sazonov P.K., Beletskaya I.P., Titanyuk I.D., Russ. Chem. Bull., 2024, 73, 1011–1017. https://doi.org/10.1007/s11172-024-4215-9
  16. Zeng J.-L., Chen Z., Zhang F.-G., Ma J.-A., Org. Lett., 2018, 20, 4562–4565. https://doi.org/10.1021/acs.orglett.8b01854
  17. Candish L., Collins K.D., Cook G.C., Douglas J.J., Gómez-Suárez A., Jolit A., Keess S., Chem. Rev., 2022, 122, 2907–2980. https://doi.org/10.1021/acs.chemrev.1c00416
  18. Barata-Vallejo S., Cooke M.V., Postigo A., ACS Catal., 2018, 8, 7287–7307. https://doi.org/10.1021/acscatal.8b02066
  19. Barata-Vallejo S., Bonesi S.M., Postigo A., Org. Biomol. Chem., 2015, 13, 11153–11183. https://doi.org/10.1039/c5ob01486g
  20. Koike T., Akita M., Top. Catal., 2014, 57, 967–974. https://doi.org/10.1007/s11244-014-0259-7
  21. Levin V.V., Dilman A.D., Chem. Rec., 2023, 23, e202300038. https://doi.org/10.1002/tcr.202300038
  22. Sladojevich F., McNeill E., Börgel J., Zheng S.-L., Ritter T., Angew. Chem. Int. Ed., 2015, 54, 3712–3716. https://doi.org/10.1002/anie.201410954
  23. Qian H.-Y., Wang Z.-L., Chen L.-L., Pan Y.-L., Xie X.-Y., Xie X., Chen J.-Z., ChemMedChem, 2018, 13, 2455–2463. https://doi.org/10.1002/cmdc.201800541
  24. Waring M.J., Clarke D.S., Fenwick M.D., Godfrey L., Groombridge S.D., Johnstone C., McKerrecher D., Pike K.G., Rayner J.W., Robb G.R., Wilson I., MedChemComm, 2012, 3, 1077–1081. https://doi.org/10.1039/C2MD20077E
  25. Berthel S.J., Kester R.F., Murphy D.E., Prins T.J., Ruebsam F., Sarabu R., Tran C.V., Vourloumis D., US20080021032, 2008.
  26. Koltun D.S., Dilman A.D., Mendeleev Commun., 2024, 34, 531–532. https://doi.org/10.1016/j.mencom.2024.06.020
  27. McGee K.A., Veltkamp D.J., Marquardt B.J., Mann K.R., J. Am. Chem. Soc., 2007, 129, 15092–15093. https://doi.org/10.1021/ja0681772

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).