ФОТОКАТАЛИТИЧЕСКОЕ ФТОРАЛКИЛИРОВАНИЕ ПРОИЗВОДНЫХ 3-АМИНОПИРАЗОЛА1

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучена реакция производных 3-аминопиразола с пентафторэтилиодидом в присутствии рутениевого фотокатализатора при облучении синим светом. 3-Аминопиразолы, содержащие заместитель в положениях 4 или 5, приводили к соответствующим продуктам фторалкилирования. В случае N-Boc производных 3-аминопиразола селективность введения фторированной группы зависит от структуры N-Boc-пиразола.

Об авторах

Д. С. Колтун

Институт органической химии им. Н.Д. Зелинского Российской академии наук

Москва, Россия

В. В. Левин

Институт органической химии им. Н.Д. Зелинского Российской академии наук

Москва, Россия

А. Д. Дильман

Институт органической химии им. Н.Д. Зелинского Российской академии наук

Email: dilman@ioc.ac.ru
Москва, Россия

Список литературы

  1. Inoue M., Sumii Y., Shibata N., ACS Omega, 2020, 5, 10633–10640. https://doi.org/10.1021/acsomega.0c00830
  2. Ogawa Y., Tokunaga E., Kobayashi O., Hirai K., Shibata N., iScience, 2020, 23, 101467. https://doi.org/10.1016/j.isci.2020.101467
  3. Nenajdenko V., Fluorine in Heterocyclic Chemistry. Springer International Publishing: Cham, Switzerland, 2014; Vol. 1 and 2.
  4. Han J., Remete A.M., Dobson L.S., Kiss L., Izawa K., Moriwaki H., Soloshonok V.A., O'Hagan D., J. Fluorine Chem., 2020, 239, 109639. https://doi.org/10.1016/j.jfluchem.2020.109639
  5. Johnson B.M., Shu Y.-Z., Zhuo X., Meanwell N.A., J. Med. Chem., 2020, 63, 6315–6386. https://doi.org/10.1021/acs.jmedchem.9b01877
  6. Pankov R.O., Prima D.O., Ananikov V.P., Coord. Chem. Rev., 2024, 516, 215897. https://doi.org/10.1016/j.ccr.2024.215897
  7. Schmidt A., Dreger A., Curr. Org. Chem., 2011, 15, 1423–1463. https://doi.org/10.2174/138527211795378263
  8. Giornal F., Pazenok S., Rodefeld L., Lui N., Vors J.-P., Leroux F.R., J. Fluorine Chem., 2013, 152, 2–11. https://doi.org/10.1016/j.jfluchem.2012.11.008
  9. Mykhailiuk P.K., Chem. Rev., 2021, 121, 1670–1715. https://doi.org/10.1021/acs.chemrev.0c01015
  10. Penning T.D., Talley J.J., Bertenshaw S.R., Carter J.S., Collins P.W., Docter S., Graneto M.J., Lee L.F., Malecha J.W., Miyashiro J.M., Rogers R.S., Rogier D.J., Yu S.S., Anderson G.D., Burton E.G., Cogburn J.N., Gregory S.A., Koboldt C.M., Per-kins W.E., Seibert K., Veenhuizen A.W., Zhang Y.Y., Isakson P.C., J. Med. Chem., 1997, 40, 1347–1365. https://doi.org/10.1021/jm960803q
  11. Duarte Hospital C., Tête A., Debizet K., Imler J., Tomkiewicz-Raulet C., Blanc E.B., Barouki R., Coumoul X., Bortoli S., Environ. Int., 2023, 180, 108219. https://doi.org/10.1016/j.envint.2023.108219
  12. Dias H.V.R., Lovely C.J., Chem. Rev., 2008, 108, 3223–3238. https://doi.org/10.1021/cr078362d
  13. Mykhailiuk P.K., Ishchenko A.Y., Stepanenko V., Cossy J., Eur. J. Org. Chem., 2016, 2016, 5485–5493. https://doi.org/10.1002/ejoc.201600947
  14. Voronin V.V., Ledovskaya M.S., Gordeev E.G., Rodygin K.S., Ananikov V.P., J. Org. Chem., 2018, 83, 3819–3828. https://doi.org/10.1021/acs.joc.8b00155
  15. Vetrov D.E., Sazonov P.K., Beletskaya I.P., Titanyuk I.D., Russ. Chem. Bull., 2024, 73, 1011–1017. https://doi.org/10.1007/s11172-024-4215-9
  16. Zeng J.-L., Chen Z., Zhang F.-G., Ma J.-A., Org. Lett., 2018, 20, 4562–4565. https://doi.org/10.1021/acs.orglett.8b01854
  17. Candish L., Collins K.D., Cook G.C., Douglas J.J., Gómez-Suárez A., Jolit A., Keess S., Chem. Rev., 2022, 122, 2907–2980. https://doi.org/10.1021/acs.chemrev.1c00416
  18. Barata-Vallejo S., Cooke M.V., Postigo A., ACS Catal., 2018, 8, 7287–7307. https://doi.org/10.1021/acscatal.8b02066
  19. Barata-Vallejo S., Bonesi S.M., Postigo A., Org. Biomol. Chem., 2015, 13, 11153–11183. https://doi.org/10.1039/c5ob01486g
  20. Koike T., Akita M., Top. Catal., 2014, 57, 967–974. https://doi.org/10.1007/s11244-014-0259-7
  21. Levin V.V., Dilman A.D., Chem. Rec., 2023, 23, e202300038. https://doi.org/10.1002/tcr.202300038
  22. Sladojevich F., McNeill E., Börgel J., Zheng S.-L., Ritter T., Angew. Chem. Int. Ed., 2015, 54, 3712–3716. https://doi.org/10.1002/anie.201410954
  23. Qian H.-Y., Wang Z.-L., Chen L.-L., Pan Y.-L., Xie X.-Y., Xie X., Chen J.-Z., ChemMedChem, 2018, 13, 2455–2463. https://doi.org/10.1002/cmdc.201800541
  24. Waring M.J., Clarke D.S., Fenwick M.D., Godfrey L., Groombridge S.D., Johnstone C., McKerrecher D., Pike K.G., Rayner J.W., Robb G.R., Wilson I., MedChemComm, 2012, 3, 1077–1081. https://doi.org/10.1039/C2MD20077E
  25. Berthel S.J., Kester R.F., Murphy D.E., Prins T.J., Ruebsam F., Sarabu R., Tran C.V., Vourloumis D., US20080021032, 2008.
  26. Koltun D.S., Dilman A.D., Mendeleev Commun., 2024, 34, 531–532. https://doi.org/10.1016/j.mencom.2024.06.020
  27. McGee K.A., Veltkamp D.J., Marquardt B.J., Mann K.R., J. Am. Chem. Soc., 2007, 129, 15092–15093. https://doi.org/10.1021/ja0681772

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).