A Comparison of Catalytic Activity of Ammonium and Phosphonium Salts in Carboxylation of Epoxides Without Lewis Acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of the catalytic efficiency of various organocatalysts for the carboxylation of epoxides based on ammonium and phosphonium salts was carried out. The results show that among low molecular weight onium salts, the efficiency of epoxide carboxylation is influenced by both the structure of the catalyst and its solubility in the reaction medium. The best efficiency was achieved with tetrabutyl-substituted onium iodides and bromides. The addition of 20 mol.% water together with the onium salt significantly accelerates the reaction with epoxides and leads to quantitative yields of mono- and disubstituted cyclic carbonates. A polystyrene type catalyst modified with an immobilized tributylphosphonium group (cat. 4 mol.%) with an additive of 1 equiv. of water leads to a quantitative yield of butylene carbonate and can be recycled without loss of catalytic activity (tested for 10 cycles), which makes it promising for practical application.

About the authors

N. Yu. Kuznetsov

A.V. Topchiev Institute of Petrochemical Synthesis; A.N. Nesmeyanov Institute of Organoelement Compounds RAS

Email: nkuzuf@ineos.ac.ru
ORCID iD: 0000-0003-2702-5366
Moscow, Russia; Moscow, Russia

S. E. Lubimov

A.N. Nesmeyanov Institute of Organoelement Compounds RAS

Email: lssp452@mail.ru
Moscow, Russia

P. V. Cherkasova

A.N. Nesmeyanov Institute of Organoelement Compounds RAS

Moscow, Russia

I. P. Beletskaya

A.V. Topchiev Institute of Petrochemical Synthesis; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

References

  1. Melieres M. and Marechal C., “Warming in the 20th century: natural or human-induced?” in Climate Change: Past, Present and Future 1st ed., U.K.: Wiley, 2015, ch. 28–33, pp. 285–354.
  2. Pörtner H.-O., Roberts D.C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Alegría A., Nico-lai M., Okem A., Petzold J., Rama B., Weyer N.M. (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019, pp. 321–445. https://doi.org/10.1017/9781009157964.006
  3. Brown S., Nicholls R.J., Woodroffe C.D., Hanson S., Hinkel J., Kebede A.S., Neumann B., Va-feidis A.T. In: Coastal Hazards, Ed: Finkl C.W., Springer Dordrecht, The Netherlands, 2013.
  4. Hjort J., Streletskiy D., Doré G., Wu Q., Bjella K., Luoto M. Nat. Rev. Earth Environ. 2022, 3, 24–38. https://doi.org/10.1038/s43017-021-00247-8
  5. Kuznetsov N.Y., Maximov A.L., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 1681–1711. https://doi.org/10.1134/S1070428022120016
  6. Aresta M., Dibenedetto A., Angelini A. Chem. Rev. 2014, 114, 1709–1742. https://doi.org/10.1021/cr4002758
  7. Chernikova E.V., Beletskaya I.P. Russ. Chem. Rev. 2024, 93, RCR5112. https://doi.org/10.59761/RCR5112
  8. Chirik P., Morris R. Acc. Chem. Res. 2015, 48, 2495–2495. https://doi.org/10.1021/acs.accounts.5b00385
  9. D’Elia V., Kleij A.W. Green Chem. Engin. 2022, 3, 210–227. https://doi.org/10.1016/j.gce.2022.01.005
  10. Prasad D., Patil K.N., Chaudhari N.K., Kim H., Nagaraja B.M., Jadhav A.H. Catal. Rev. Sci. Engin. 2022, 64, 356–443. https://doi.org/10.1080/01614940.2020.1812212
  11. Kuznetsov N.Y., Beletskaya I.P. Russ. J. Org. Chem. 2023, 59, 1261–1297. https://doi.org/10.1134/S1070428021080018
  12. Mishra V., Peter S.C. Chem. Catal. 2024, 4, 100796. https://doi.org/10.1016/j.checat.2023.100796
  13. Cokoja M., Wilhelm M.E., Anthofer M.H., Herrmann W.A., Kìhn F.E. ChemSusChem. 2015, 8, 2436–2454. https://doi.org/10.1002/cssc.201500161
  14. Peña M.A., Balas M., Kong J., Villanneau R., Christ L., Tuel A., Launay F. Catal. Sci. Technol. 2024, 14, 1305–1317. https://doi.org/10.1039/D3CY01551C
  15. Numpilai T., Pham L.K.H., Witoon T. Ind. Eng. Chem. Res. 2024, 63, 19865–19915. https://doi.org/10.1021/acs.iecr.4c02072
  16. Sarkar S., Ghosh S., Sani R., Seth J., Khan A., Islam Sk.M. ACS Sustainable Chem. Eng. 2023, 11, 14422–14434. https://doi.org/10.1021/acssuschemeng.3c03041
  17. Li N., Zhang M., Li Z., Hu Y., Shi N., Wang Y., Shi Y., Yuan X., Liu Z., Guo K. Org. Biomol. Chem. 2025, 23, 1425–1436. https://doi.org/10.1039/D4OB01646G
  18. Zhang Z., Guan A., Yu J., Jiang X., Han S., Wen Z., Du B., Song B. New J. Chem. 2024, 48, 13245–13250. https://doi.org/10.1039/D4NJ02188F
  19. Seong Y., Lee S., Cho S., Kim Y., Kim Y. Catalysts. 2024, 14, 90. https://doi.org/10.3390/catal14010090
  20. Gordon J.E. J. Org. Chem. 1965, 30, 2760–2763. https://doi.org/10.1021/jo01019a060
  21. Yoshii K., Yamaji K., Tsuda T., Tsunashima K., Yoshida H., Ozaki M., Kuwabata S. J. Phys. Chem. B. 2013, 117, 15051–15059. https://doi.org/10.1021/jp406791a
  22. Pálková H., Zimowska M., Jankovič Ľ., Sulikowski B., Serwicka E.M., Madejová J. Appl. Clay Sci. 2017, 138, 63–73. https://doi.org/10.1016/j.clay.2016.12.043
  23. Sowmiah S., Srinivasadesikan V., Tseng M.-C., Chu Y.-H. Molecules. 2009, 14, 3780–3813. https://doi.org/10.3390/molecules14093780
  24. Sun J., Zhang S., Cheng W., Ren J. Tetrahedron Lett. 2008, 49, 3588–3591. https://doi.org/10.1016/j.tetlet.2008.04.022
  25. Tsutsumi Y., Yamakawa K., Yoshida M., Ema T., Sakai T. Org. Lett. 2010, 12, 5728–5731. https://doi.org/10.1021/ol102539x
  26. Yang G.-W., Wang Y., Qi H., Zhang Y.-Y., Zhu X.-F., Lu C., Yang L., Wu G.-P. Angew. Chem. Int. Ed. 2022, 61, e202210243. https://doi.org/10.1002/anie.202210243
  27. Nishikubo T., Kameyama A., Yamashita J., Tomoi M., Fukuda W. J. Polym. Sci. A Polym. Chem. 1993, 31, 939–947. https://doi.org/10.1002/pola.1993.080310412
  28. Kohrt C., Werner T. ChemSusChem. 2015, 8, 2031–2034. https://doi.org/10.1002/cssc.201500128
  29. Lyubimov S.E., Gazheev S.T., Popov A.Y., Cherkasova P.V., Maksimova Yu.A. Russ. Chem. Bull. 2024, 73, 1046–1051. https://doi.org/10.1007/s11172-024-4219-5
  30. Lyubimov S.E., Cherkasova P.V. Russ. Chem. Bull. 2023, 72, 1259–1261. https://doi.org/10.1007/s11172-023-3898-7
  31. Lyubimov S.E., Cherkasova P.V. Russ. Chem. Bull. 2023, 72, 1471–1473. https://doi.org/10.1007/s11172-023-3922-y
  32. Sun J., Ren J., Zhang S., Cheng W. Tetrahedron Lett. 2009, 50, 423–426. https://doi.org/10.1016/j.tetlet.2008.11.034
  33. Alassmy Y.A., Pescarmona P.P. ChemSusChem. 2019, 12, 3856–3863. https://doi.org/10.1002/cssc.201901124
  34. Hallett J.P., Welton T. Chem. Rev. 2011, 111, 3508-3576. https://doi.org/10.1021/cr1003248
  35. Jose T., Canellas S., Pericas M.A., Kleij A.W. Green Chem. 2017, 19, 5488–5493. https://doi.org/10.1039/c7gc02856c
  36. Merzliakov D.A., Alexeev M.S., Topchiy M.A., Yakhvarov D.G., Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. Molecules. 2025, 30, 248. https://doi.org/10.3390/molecules30020248
  37. Wiest J., Saedtler M., Balk A., Merget B., Widmer T., Bruhn H., Raccuglia M., Walid E., Picard F., Stop-per H., Dekant W., Lühmann T., Sotriffer C., Galli B., Holzgrabe U., Meinel L. J. Control. Release. 2017, 268, 314-322. https://doi.org/10.1016/j.jconrel.2017.10.040
  38. Ju P., Qi W., Guo B., Liu W., Wu Q., Su Q. Catal. Lett. 2023, 153, 2125–2136. https://doi.org/10.1007/s10562-022-04131-y
  39. Whiteoak C.J., Martin E., Belmonte M.M., Benet-Buchholz J., Kleij A.W. Adv. Synth. Catal. 2012, 354, 469−476. https://doi.org/10.1002/adsc.201100752
  40. Castro-Osma J.A., North M., Wu X. Chem. Eur. J. 2016, 22, 2100–2107. https://doi.org/10.1002/chem.201504305

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).