Electrochemical Synthesis of Isoxazolines from Aldoximes and EWG Substituted Alkenes Enabling by in situ Generated Hypervalent Iodine Compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We developed the electrochemical synthesis of isoxazolines from aldoximes and EWG-substituted alkenes with the assistance of the in situ generated hypervalent iodine compounds. A wide range of substituted isoxazolines possessing fungicidal activity were obtained in 20–48% yields under constant current conditions in an undivided cell.

About the authors

O. V. Bitukov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; All-Russian Research Institute for Phytopathology

ORCID iD: 0000-0002-6452-0801
Moscow, Russia; B. Vyazyonny, Russia

A. S. Kirillov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID iD: 0009-0003-3073-5702
Moscow, Russia

V. A. Vil

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

ORCID iD: 0000-0002-6847-6035
Moscow, Russia

G. I. Nikishin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

A. O. Terent'ev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: alterex@yandex.ru
ORCID iD: 0000-0001-8018-031X
Moscow, Russia

References

  1. Agrawal N., Mishra P., Med. Chem. Res. 2018, 27 (5), 1309–1344. https://doi.org/10.1007/s00044-018-2152-6
  2. Huang S., Ma H., Wang Z., Zhang P., Li S., Li Y., Liu A., Li Y., Liu Y., Wang Q., J. Agric. Food. Chem. 2023, 71 (13), 5107–5116. https://doi.org/10.1021/acs.jafc.2c08161
  3. Kumar G., Shankar R., ChemMedChem. 2021, 16 (3), 430–447. https://doi.org/10.1002/cmdc.202000575
  4. Dai P., Tan X., Luo Q., Yu X., Zhang S., Liu F., Zhang W.-H., Org. Lett. 2019, 21 (13), 5096–5100. https://doi.org/10.1021/acs.orglett.9b01683
  5. De Angelis L., Crawford A.M., Su Y.-L., Wherritt D., Arman H., Doyle M.P., Org. Lett. 2021, 23 (3), 925–929. https://doi.org/10.1021/acs.orglett.0c04130
  6. Himo F., Lovell T., Hilgraf R., Rostovtsev V.V., Noodleman L., Sharpless K.B., Fokin V.V., J. Am. Chem. Soc. 2005, 127 (1), 210–216. https://doi.org/10.1021/ja0471525
  7. Itoh K.-i., Hayakawa M., Abe R., Takahashi S., Hasegawa K., Aoyama T., Synthesis. 2021, 53 (24), 4636–4643. https://doi.org/10.1055/a-1581-0235
  8. Kadam K.S., Gandhi T., Gupte A., Gangopadhyay A.K., Sharma R., Synthesis. 2016, 48 (22), 3996–4008. https://doi.org/10.1055/s-0035-1561464
  9. Wang X.-D., Zhu L.-H., Liu P., Wang X.-Y., Yu-an H.-Y., Zhao Y.-L., J. Org. Chem. 2019, 84 (24), 16214–16221. https://doi.org/10.1021/acs.joc.9b02760
  10. Xu J., Hamme Ii A.T., Synlett. 2008, 2008 (06), 919–923. https://doi.org/10.1055/s-2008-1042906
  11. Ma L., Jin F., Cheng X., Tao S., Jiang G., Li X., Yang J., Bao X., Wan X., Chem. Sci. 2021, 12 (28), 9823–9830. https://doi.org/10.1039/D1SC02352G
  12. De Angelis L., Zheng H., Perz M.T., Arman H., Doyle M.P., Org. Lett. 2021, 23 (16), 6542–6546. https://doi.org/10.1021/acs.orglett.1c02352
  13. Hofmann S., Winter J., Prenzel T., de Jesús Gálvez-Vázquez M., Waldvogel S.R., ChemElectroChem. 2023, 10 (22), e202300434. https://doi.org/10.1002/celc.202300434
  14. Holman S.D.L., Wills A.G., Fazakerley N.J., Poole D.L., Coe D.M., Berlouis L.A., Reid M., Chem. Eur. J. 2022, 28 (13), e202103728. https://doi.org/10.1002/chem.202103728
  15. Das B., Holla H., Mahender G., Banerjee J., Ravinder Reddy M., Tetrahedron Lett. 2004, 45 (39), 7347–7350. https://doi.org/10.1016/j.tetlet.2004.07.159
  16. Bhosale S., Kurhade S., Prasad U.V., Palle V.P., Bhu-niya D., Tetrahedron Lett. 2009, 50 (27), 3948–3951. https://doi.org/10.1016/j.tetlet.2009.04.073
  17. Just G., Dahl K., TETRAB. 1968, 24 (15), 5251–5269. https://doi.org/10.1016/S0040-4020(01)96322-7
  18. Kiegiel J., Popławska M., Jóźwik J., Kosior M., Jurc-zak J., Tetrahedron Lett. 1999, 40 (30), 5605–5608. https://doi.org/10.1016/S0040-4039(99)01041-2
  19. Kudyba I., Jóźwik J., Romański J., Raczko J., Jurczak J., Tetrahedron: Asymmetry. 2005, 16 (13), 2257–2262. https://doi.org/10.1016/j.tetasy.2005.05.025
  20. Armstrong S.K., Collington E.W., Knight J.G., Naylorb A., Warren S., J. Chem. Soc., Perkin Trans. 1. 1993, (13), 1433–1447. https://doi.org/10.1039/P19930001433
  21. Crossley J.A., Browne D.L., J. Org. Chem. 2010, 75 (15), 5414–5416. https://doi.org/10.1021/jo1011174
  22. Gi H.-J., Xiang Y., Schinazi R.F., Zhao K., J. Org. Chem. 1997, 62 (1), 88–92. https://doi.org/10.1021/jo961779r
  23. Hu M., He X., Niu Z., Yan Z., Zhou F., Shang Y., Synthesis. 2014, 46 (04), 510–514. https://doi.org/10.1055/s-0033-1340470
  24. Jackowski O., Lecourt T., Micouin L., Org. Lett. 2011, 13 (20), 5664–5667. https://doi.org/10.1021/ol202389u
  25. Willy B., Rominger F., Müller T.J.J., Synthesis. 2008, 2008 (02), 293–303. https://doi.org/10.1055/s-2007-1000856
  26. Ye Y., Zheng Y., Xu G.-Y., Liu L.-Z., Heteroat. Chem. 2003, 14 (3), 254–257. https://doi.org/10.1002/hc.10136
  27. Zhao G., Liang L., Wen C.H.E., Tong R., Org. Lett. 2019, 21 (1), 315–319. https://doi.org/10.1021/acs.orglett.8b03829
  28. Svejstrup T.D., Zawodny W., Douglas J.J., Bidgeli D., Sheikh N.S., Leonori D., Chem. Commun. 2016, 52 (83), 12302–12305. https://doi.org/10.1039/C6CC06029C
  29. Koposov A.Y., Boyarskikh V.V., Zhdankin V.V., Org. Lett. 2004, 6 (20), 3613–3615. https://doi.org/10.1021/ol0484714
  30. Zhdankin V.V., ARKIVOC. 2009, 2009 (1), 1–62. https://doi.org/10.3998/ark.5550190.0010.101
  31. Zhdankin V.V., Wiley: 2013.
  32. Kazmierczak P., Skulski L., Kraszkiewicz L., 2001, 6 (11), 881–891.
  33. Dohi T., Morimoto K., Takenaga N., Goto A., Maruyama A., Kiyono Y., Tohma H., Kita Y., J. Org. Chem. 2007, 72 (1), 109–116. https://doi.org/10.1021/jo061820i
  34. Moroda A., Togo H., TETRAB. 2006, 62 (52), 12408–12414. https://doi.org/10.1016/j.tet.2006.09.112
  35. Hossain M.D., Kitamura T., Synthesis. 2005, 2005 (12), 1932–1934. https://doi.org/10.1055/s-2005-869962
  36. Page T.K., Wirth T., Synthesis. 2006, 2006 (18), 3153–3155. https://doi.org/10.1055/s-2006-942543
  37. Sarie J.C., Thiehoff C., Mudd R.J., Daniliuc C.G., Kehr G., Gilmour R., J. Org. Chem. 2017, 82 (22), 11792–11798. https://doi.org/10.1021/acs.joc.7b01671
  38. Ye C., Twamley B., Shreeve J.n.M., Org. Lett. 2005, 7 (18), 3961–3964. https://doi.org/10.1021/ol051446t
  39. Togo H., Taguchi R., Yamaguchi K., Yokoyama M., J. Chem. Soc., Perkin Trans. 1. 1995, (17), 2135–2139. https://doi.org/10.1039/P19950002135
  40. Chen C., Wang X., Yang T., 2022, 10. https://doi.org/10.3389/fchem.2022.883474
  41. Elsherbini M., Moran W.J., J. Org. Chem. 2023, 88 (3), 1424–1433. https://doi.org/10.1021/acs.joc.2c02309
  42. Elsherbini M., Winterson B., Alharbi H., Folgueiras-Amador A.A., Génot C., Wirth T., Angew. Chem. Int. Ed. 2019, 58 (29), 9811–9815. https://doi.org/10.1002/anie.201904379
  43. Zu B., Ke J., Guo Y., He C., Chin. J. Chem. 2021, 39 (3), 627–632. https://doi.org/10.1002/cjoc.202000501
  44. Fuchigami T., Fujita T., J. Org. Chem. 1994, 59 (24), 7190–7192. https://doi.org/10.1021/jo00103a003
  45. Kajiyama D., Saitoh T., Nishiyama S., Electro-chemistry. 2013, 81 (5), 319–324. https://doi.org/10.5796/electrochemistry.81.319
  46. Paveliev S.A., Segida O.O., Bityukov O.V., Tang H.-T., Pan Y.-M., Nikishin G.I., Terent'ev A.O., Adv. Synth. Catal. 2022, 364 (22), 3910–3916. https://doi.org/10.1002/adsc.202200696
  47. Broese T., Francke R., Org. Lett. 2016, 18 (22), 5896–5899. https://doi.org/10.1021/acs.orglett.6b02979
  48. Petrosyan V.A., Niyazymbetov M.E., Ul'yanova é.V., Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38 (7), 1548–1551. https://doi.org/10.1007/BF00978458
  49. Bystron T., Devadas B., Bouzek K., Svoboda J., Kolarikova V., Kvicala J., ChemElectroChem. 2021, 8 (19), 3755–3761. https://doi.org/10.1002/celc.202101040
  50. Doobary S., Poole D.L., Lennox A.J.J., J. Org. Chem. 2021, 86 (22), 16095–16103. https://doi.org/10.1021/acs.joc.1c01946
  51. Frey B.L., Thai P., Patel L., Powers D.C., Synthesis. 2023, 55 (18), 3019–3025. https://doi.org/10.1055/a-2029-0617
  52. Han L., Zhang B., Xiang C., Yan J., Synthesis. 2014, 46 (04), 503–509. https://doi.org/10.1055/s-0033-1340464
  53. Francke R., Curr. Opin. Electrochem. 2019, 15, 83–88. https://doi.org/10.1016/j.coelec.2019.03.012
  54. Gharpure S.J., Pansuriya K.C., Pal J., Hajam S.A., Kumari S., Org. Lett. 2024, 26 (45), 9787–9792. https://doi.org/10.1021/acs.orglett.4c03835
  55. Maurya R.K., Kumar S., Kumar V., Dey A., Patlol-la R.R., Burra A.G., Khatravath M., Asian. J. Org. Chem. 2023, 12 (11), e202300410. https://doi.org/10.1002/ajoc.202300410
  56. Yoshimura A., Jarvi M.E., Shea M.T., Makitalo C.L., Rohde G.T., Yusubov M.S., Saito A., Zhdankin V.V., Eur. J. Org. Chem. 2019, 2019 (39), 6682–6689. https://doi.org/10.1002/ejoc.201901258
  57. Bernard R.S., Jha A.K., Kalek M., Tetrahedron Chem. 2024, 11, 100081. https://doi.org/10.1016/j.tchem.2024.100081
  58. Ning Guohui Z.W., Bian Qiang, Tang Xiangyang, 2014, 34 (9), 1800–1805. https://doi.org/10.6023/cjoc201403026
  59. Wang Y., Wang C., Tian Q., Li Y., J. Agric. Food. Chem. 2024, 72 (27), 15077–15091. https://doi.org/10.1021/acs.jafc.4c02096
  60. Zhang T., Dong M., Zhao J., Zhang X., Mei X., J. Pestic. Sci. 2019, 44 (3), 181–185. https://doi.org/10.1584/jpestics.D19-028
  61. Maiti D., Bhattacharya P.K., Synlett. 1998, 1998 (04), 385–386. https://doi.org/10.1055/s-1998-1669
  62. Sharma A., Talimarada D., Yadav U.P., Singh N., Reddy A.S., Bag D., Biswas K., Baidya A., Borale A.N., Shinde D., Singh S., Holla H., Che-mistrySelect. 2020, 5 (37), 11560–11572. https://doi.org/10.1002/slct.202003170
  63. Gołȩbiewski W.M., Gucma M., J. Heterocycl. Chem. 2006, 43 (2), 509–513. https://doi.org/10.1002/jhet.5570430240
  64. Gangadhara Chary R., Rajeshwar Reddy G., Ganesh Y.S.S., Vara Prasad K., Raghunadh A., Krishna T., Mukherjee S., Pal M., Adv. Synth. Catal. 2014, 356 (1), 160–164. https://doi.org/10.1002/adsc.201300712
  65. Gairola D., Raza M.S., Roshani K., Peddinti R.K., ChemistrySelect. 2023, 8 (26), e202205035. https://doi.org/10.1002/slct.202205035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).