Electrochemical Synthesis of Isoxazolines from Aldoximes and EWG Substituted Alkenes Enabling by in situ Generated Hypervalent Iodine Compounds
- Authors: Bitukov O.V.1,2, Kirillov A.S.1, Vil V.A.1, Nikishin G.I.1, Terent'ev A.O.1
-
Affiliations:
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- All-Russian Research Institute for Phytopathology
- Issue: Vol 61, No 7 (2025)
- Pages: 870–880
- Section: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0514-7492/article/view/376476
- DOI: https://doi.org/10.7868/S3034630425070081
- ID: 376476
Cite item
Abstract
About the authors
O. V. Bitukov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; All-Russian Research Institute for Phytopathology
ORCID iD: 0000-0002-6452-0801
Moscow, Russia; B. Vyazyonny, Russia
A. S. Kirillov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
ORCID iD: 0009-0003-3073-5702
Moscow, Russia
V. A. Vil
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
ORCID iD: 0000-0002-6847-6035
Moscow, Russia
G. I. Nikishin
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscow, Russia
A. O. Terent'ev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: alterex@yandex.ru
ORCID iD: 0000-0001-8018-031X
Moscow, Russia
References
- Agrawal N., Mishra P., Med. Chem. Res. 2018, 27 (5), 1309–1344. https://doi.org/10.1007/s00044-018-2152-6
- Huang S., Ma H., Wang Z., Zhang P., Li S., Li Y., Liu A., Li Y., Liu Y., Wang Q., J. Agric. Food. Chem. 2023, 71 (13), 5107–5116. https://doi.org/10.1021/acs.jafc.2c08161
- Kumar G., Shankar R., ChemMedChem. 2021, 16 (3), 430–447. https://doi.org/10.1002/cmdc.202000575
- Dai P., Tan X., Luo Q., Yu X., Zhang S., Liu F., Zhang W.-H., Org. Lett. 2019, 21 (13), 5096–5100. https://doi.org/10.1021/acs.orglett.9b01683
- De Angelis L., Crawford A.M., Su Y.-L., Wherritt D., Arman H., Doyle M.P., Org. Lett. 2021, 23 (3), 925–929. https://doi.org/10.1021/acs.orglett.0c04130
- Himo F., Lovell T., Hilgraf R., Rostovtsev V.V., Noodleman L., Sharpless K.B., Fokin V.V., J. Am. Chem. Soc. 2005, 127 (1), 210–216. https://doi.org/10.1021/ja0471525
- Itoh K.-i., Hayakawa M., Abe R., Takahashi S., Hasegawa K., Aoyama T., Synthesis. 2021, 53 (24), 4636–4643. https://doi.org/10.1055/a-1581-0235
- Kadam K.S., Gandhi T., Gupte A., Gangopadhyay A.K., Sharma R., Synthesis. 2016, 48 (22), 3996–4008. https://doi.org/10.1055/s-0035-1561464
- Wang X.-D., Zhu L.-H., Liu P., Wang X.-Y., Yu-an H.-Y., Zhao Y.-L., J. Org. Chem. 2019, 84 (24), 16214–16221. https://doi.org/10.1021/acs.joc.9b02760
- Xu J., Hamme Ii A.T., Synlett. 2008, 2008 (06), 919–923. https://doi.org/10.1055/s-2008-1042906
- Ma L., Jin F., Cheng X., Tao S., Jiang G., Li X., Yang J., Bao X., Wan X., Chem. Sci. 2021, 12 (28), 9823–9830. https://doi.org/10.1039/D1SC02352G
- De Angelis L., Zheng H., Perz M.T., Arman H., Doyle M.P., Org. Lett. 2021, 23 (16), 6542–6546. https://doi.org/10.1021/acs.orglett.1c02352
- Hofmann S., Winter J., Prenzel T., de Jesús Gálvez-Vázquez M., Waldvogel S.R., ChemElectroChem. 2023, 10 (22), e202300434. https://doi.org/10.1002/celc.202300434
- Holman S.D.L., Wills A.G., Fazakerley N.J., Poole D.L., Coe D.M., Berlouis L.A., Reid M., Chem. Eur. J. 2022, 28 (13), e202103728. https://doi.org/10.1002/chem.202103728
- Das B., Holla H., Mahender G., Banerjee J., Ravinder Reddy M., Tetrahedron Lett. 2004, 45 (39), 7347–7350. https://doi.org/10.1016/j.tetlet.2004.07.159
- Bhosale S., Kurhade S., Prasad U.V., Palle V.P., Bhu-niya D., Tetrahedron Lett. 2009, 50 (27), 3948–3951. https://doi.org/10.1016/j.tetlet.2009.04.073
- Just G., Dahl K., TETRAB. 1968, 24 (15), 5251–5269. https://doi.org/10.1016/S0040-4020(01)96322-7
- Kiegiel J., Popławska M., Jóźwik J., Kosior M., Jurc-zak J., Tetrahedron Lett. 1999, 40 (30), 5605–5608. https://doi.org/10.1016/S0040-4039(99)01041-2
- Kudyba I., Jóźwik J., Romański J., Raczko J., Jurczak J., Tetrahedron: Asymmetry. 2005, 16 (13), 2257–2262. https://doi.org/10.1016/j.tetasy.2005.05.025
- Armstrong S.K., Collington E.W., Knight J.G., Naylorb A., Warren S., J. Chem. Soc., Perkin Trans. 1. 1993, (13), 1433–1447. https://doi.org/10.1039/P19930001433
- Crossley J.A., Browne D.L., J. Org. Chem. 2010, 75 (15), 5414–5416. https://doi.org/10.1021/jo1011174
- Gi H.-J., Xiang Y., Schinazi R.F., Zhao K., J. Org. Chem. 1997, 62 (1), 88–92. https://doi.org/10.1021/jo961779r
- Hu M., He X., Niu Z., Yan Z., Zhou F., Shang Y., Synthesis. 2014, 46 (04), 510–514. https://doi.org/10.1055/s-0033-1340470
- Jackowski O., Lecourt T., Micouin L., Org. Lett. 2011, 13 (20), 5664–5667. https://doi.org/10.1021/ol202389u
- Willy B., Rominger F., Müller T.J.J., Synthesis. 2008, 2008 (02), 293–303. https://doi.org/10.1055/s-2007-1000856
- Ye Y., Zheng Y., Xu G.-Y., Liu L.-Z., Heteroat. Chem. 2003, 14 (3), 254–257. https://doi.org/10.1002/hc.10136
- Zhao G., Liang L., Wen C.H.E., Tong R., Org. Lett. 2019, 21 (1), 315–319. https://doi.org/10.1021/acs.orglett.8b03829
- Svejstrup T.D., Zawodny W., Douglas J.J., Bidgeli D., Sheikh N.S., Leonori D., Chem. Commun. 2016, 52 (83), 12302–12305. https://doi.org/10.1039/C6CC06029C
- Koposov A.Y., Boyarskikh V.V., Zhdankin V.V., Org. Lett. 2004, 6 (20), 3613–3615. https://doi.org/10.1021/ol0484714
- Zhdankin V.V., ARKIVOC. 2009, 2009 (1), 1–62. https://doi.org/10.3998/ark.5550190.0010.101
- Zhdankin V.V., Wiley: 2013.
- Kazmierczak P., Skulski L., Kraszkiewicz L., 2001, 6 (11), 881–891.
- Dohi T., Morimoto K., Takenaga N., Goto A., Maruyama A., Kiyono Y., Tohma H., Kita Y., J. Org. Chem. 2007, 72 (1), 109–116. https://doi.org/10.1021/jo061820i
- Moroda A., Togo H., TETRAB. 2006, 62 (52), 12408–12414. https://doi.org/10.1016/j.tet.2006.09.112
- Hossain M.D., Kitamura T., Synthesis. 2005, 2005 (12), 1932–1934. https://doi.org/10.1055/s-2005-869962
- Page T.K., Wirth T., Synthesis. 2006, 2006 (18), 3153–3155. https://doi.org/10.1055/s-2006-942543
- Sarie J.C., Thiehoff C., Mudd R.J., Daniliuc C.G., Kehr G., Gilmour R., J. Org. Chem. 2017, 82 (22), 11792–11798. https://doi.org/10.1021/acs.joc.7b01671
- Ye C., Twamley B., Shreeve J.n.M., Org. Lett. 2005, 7 (18), 3961–3964. https://doi.org/10.1021/ol051446t
- Togo H., Taguchi R., Yamaguchi K., Yokoyama M., J. Chem. Soc., Perkin Trans. 1. 1995, (17), 2135–2139. https://doi.org/10.1039/P19950002135
- Chen C., Wang X., Yang T., 2022, 10. https://doi.org/10.3389/fchem.2022.883474
- Elsherbini M., Moran W.J., J. Org. Chem. 2023, 88 (3), 1424–1433. https://doi.org/10.1021/acs.joc.2c02309
- Elsherbini M., Winterson B., Alharbi H., Folgueiras-Amador A.A., Génot C., Wirth T., Angew. Chem. Int. Ed. 2019, 58 (29), 9811–9815. https://doi.org/10.1002/anie.201904379
- Zu B., Ke J., Guo Y., He C., Chin. J. Chem. 2021, 39 (3), 627–632. https://doi.org/10.1002/cjoc.202000501
- Fuchigami T., Fujita T., J. Org. Chem. 1994, 59 (24), 7190–7192. https://doi.org/10.1021/jo00103a003
- Kajiyama D., Saitoh T., Nishiyama S., Electro-chemistry. 2013, 81 (5), 319–324. https://doi.org/10.5796/electrochemistry.81.319
- Paveliev S.A., Segida O.O., Bityukov O.V., Tang H.-T., Pan Y.-M., Nikishin G.I., Terent'ev A.O., Adv. Synth. Catal. 2022, 364 (22), 3910–3916. https://doi.org/10.1002/adsc.202200696
- Broese T., Francke R., Org. Lett. 2016, 18 (22), 5896–5899. https://doi.org/10.1021/acs.orglett.6b02979
- Petrosyan V.A., Niyazymbetov M.E., Ul'yanova é.V., Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38 (7), 1548–1551. https://doi.org/10.1007/BF00978458
- Bystron T., Devadas B., Bouzek K., Svoboda J., Kolarikova V., Kvicala J., ChemElectroChem. 2021, 8 (19), 3755–3761. https://doi.org/10.1002/celc.202101040
- Doobary S., Poole D.L., Lennox A.J.J., J. Org. Chem. 2021, 86 (22), 16095–16103. https://doi.org/10.1021/acs.joc.1c01946
- Frey B.L., Thai P., Patel L., Powers D.C., Synthesis. 2023, 55 (18), 3019–3025. https://doi.org/10.1055/a-2029-0617
- Han L., Zhang B., Xiang C., Yan J., Synthesis. 2014, 46 (04), 503–509. https://doi.org/10.1055/s-0033-1340464
- Francke R., Curr. Opin. Electrochem. 2019, 15, 83–88. https://doi.org/10.1016/j.coelec.2019.03.012
- Gharpure S.J., Pansuriya K.C., Pal J., Hajam S.A., Kumari S., Org. Lett. 2024, 26 (45), 9787–9792. https://doi.org/10.1021/acs.orglett.4c03835
- Maurya R.K., Kumar S., Kumar V., Dey A., Patlol-la R.R., Burra A.G., Khatravath M., Asian. J. Org. Chem. 2023, 12 (11), e202300410. https://doi.org/10.1002/ajoc.202300410
- Yoshimura A., Jarvi M.E., Shea M.T., Makitalo C.L., Rohde G.T., Yusubov M.S., Saito A., Zhdankin V.V., Eur. J. Org. Chem. 2019, 2019 (39), 6682–6689. https://doi.org/10.1002/ejoc.201901258
- Bernard R.S., Jha A.K., Kalek M., Tetrahedron Chem. 2024, 11, 100081. https://doi.org/10.1016/j.tchem.2024.100081
- Ning Guohui Z.W., Bian Qiang, Tang Xiangyang, 2014, 34 (9), 1800–1805. https://doi.org/10.6023/cjoc201403026
- Wang Y., Wang C., Tian Q., Li Y., J. Agric. Food. Chem. 2024, 72 (27), 15077–15091. https://doi.org/10.1021/acs.jafc.4c02096
- Zhang T., Dong M., Zhao J., Zhang X., Mei X., J. Pestic. Sci. 2019, 44 (3), 181–185. https://doi.org/10.1584/jpestics.D19-028
- Maiti D., Bhattacharya P.K., Synlett. 1998, 1998 (04), 385–386. https://doi.org/10.1055/s-1998-1669
- Sharma A., Talimarada D., Yadav U.P., Singh N., Reddy A.S., Bag D., Biswas K., Baidya A., Borale A.N., Shinde D., Singh S., Holla H., Che-mistrySelect. 2020, 5 (37), 11560–11572. https://doi.org/10.1002/slct.202003170
- Gołȩbiewski W.M., Gucma M., J. Heterocycl. Chem. 2006, 43 (2), 509–513. https://doi.org/10.1002/jhet.5570430240
- Gangadhara Chary R., Rajeshwar Reddy G., Ganesh Y.S.S., Vara Prasad K., Raghunadh A., Krishna T., Mukherjee S., Pal M., Adv. Synth. Catal. 2014, 356 (1), 160–164. https://doi.org/10.1002/adsc.201300712
- Gairola D., Raza M.S., Roshani K., Peddinti R.K., ChemistrySelect. 2023, 8 (26), e202205035. https://doi.org/10.1002/slct.202205035
Supplementary files


