Synthesis of 2-Arylpropionic Acids by Pd-Catalyzed Carbonylation of Vinyl Arenes with Formic Acid under Mild Reaction Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Efficient synthesis of 2-arylpropionic acids by Pd-catalyzed carbonylation of vinyl arenes with CO and HCOOH is reported. Excellent regioselectivity to target 2-arylpropionic acids is achieved by the addition of some polyvinylpyrrolidone. Mild reaction conditions, available catalytic system and low Pd loading are the advantages of the proposed protocol. It was used in the total synthesis of rac-naproxen starting from commercially available 6-hydroxy-2-naphthoic acid. Additionally, vinyl acetate hydroxycarbonylation in 2-acetoxypropionic is demonstrated.

About the authors

A. O. Ustyuzhanin

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia (Higher Chemical College RAS)

ORCID iD: 0000-0003-3526-5757
Moscow, Russia; Moscow, Russia

T. N. Bondarenko

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia (Higher Chemical College RAS)

Moscow, Russia; Moscow, Russia

P. A. Podgornaya

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia (Higher Chemical College RAS)

Moscow, Russia; Moscow, Russia

M. V. Tsapkina

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia (Higher Chemical College RAS)

Moscow, Russia; Moscow, Russia

O. L. Eliseev

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia (Higher Chemical College RAS)

Email: oleg@ioc.ac.ru
ORCID iD: 0000-0002-1052-9237
Moscow, Russia; Moscow, Russia

References

  1. Handbook of Organopalladium Chemistry for Organic Synthesis; Neguishi, E.-I., Ed.; John Wiley, Sons: New York, 2002; Vols. 1, 2.
  2. Kiss G. Chem. Rev. 2001, 101, 3435–3456. https://https://doi.org/10.1021/cr010328q
  3. Sang R., Kucmierczyk P., Duhren R., Razzaq R., Dong K., Liu J., Franke R., Jackstell R., Beller M. Angew. Chem. Int. Ed. 2019, 58, 14365–14373. https://doi.org/10.1002/anie.201908451
  4. Goldbach V., Falivene L., Caporaso L., Cavallo L.and Mecking S. ACS Catal. 2016, 6, 8229–8238. https://doi.org/10.1021/acscatal.6b02622
  5. Brennfuhrer A., Neumann H., Beller M. ChemCatChem. 2009, 1, 28–41. https://doi.org/10.1002/cctc.200900062
  6. Clegg W., Elsegood M. R. J., Eastham G. R., Tooze R. P., Wang X. L., Whiston K. Chem. Commun. 1999, 18, 1877–1878. https://doi.org/10.1039/A905521E
  7. Vieira T.O., Green M.J., Alper H. Org. Lett. 2006, 8, 6143–6145. https://doi.org/10.1021/ol062646n
  8. Amézquita-Valencia M., Achonduh G., Alper H. J. Org. Chem. 2015, 80, 6419–6424. https://doi.org/10.1021/acs.joc.5b00851
  9. Guiu E., Caporali M., Mun B., Mu C., Lutz M., Spek A.L., Claver C., van Leeuwen P.W.N.M. Organometallics. 2006, 25, 3102–3104. https://doi.org/10.1021/om060121t
  10. Konrad T.M., Durrani J. T., Cobley C. J., Clarke M. L. Chem. Commun. 2013, 49, 3306–3308. https://doi.org/10.1039/C3CC41291A
  11. Wu L., Liu Q., Jackstell R., Beller M. Org. Chem. Front. 2015, 2, 771–774. https://doi.org/10.1039/C5QO00071H
  12. Eliseev O.L., Bondarenko T.N., Churikova A.D., Lapidus A.L. Mendeleev Commun. 2022, 32, 804–806. https://doi.org/10.1016/j.mencom.2022.11.032
  13. Zhang G., Ji X., Yu H., Yang L., Jiao P. , Huang H. Tetrahedron Letters. 2016, 57, 383–386. https://doi.org/10.1016/j.tetlet.2015.12.031
  14. Fang X., Jackstell R., Beller M. Angew. Chem. Int. Ed. 2013, 52, 14089–14093. https://doi.org/10.1002/anie.201308455
  15. Coates G. W. Chem. Rev. 2000, 100, 1223–1252. https://doi.org/10.1021/cr990286u
  16. Rix F.C., Brookhart M., White P.S. J. Am. Chem. Soc. 1996, 118, 4746–4764. https://doi.org/10.1021/ja953276t
  17. Hardacre C., Holbrey J.D., Katdare S.P., Seddon K.R. Green Chemistry. 2002, 4, 143–146. https://doi.org/10.1039/B111157B
  18. J. Guo, Y. Ye, S. Gao, Feng Y. J. Mol. Catal. A. 2009, 307, 121–127. https://doi.org/10.1016/j.molcata.2009.03.017
  19. Chukanova O.M., Alpherov K.A., Belov P.B. J. Mol Catal. A 2010, 325, 60–64. https://doi.org/10.1016/j.molcata.2010.03.033
  20. Sang R., Hu Y., Razzaq R., Jackstell R., Franke R., Beller M. Org. Chem. Front. 2021, 8, 799–811. https://doi.org/10.1039/D0QO01203C
  21. Seayad A., Jayasree S., Damodaran K., Toniolo L., Chaudhari R.V. J. Organomet. Chem. 2000, 601, 100–107. https://doi.org/10.1016/S0022-328X(00)00041-3
  22. Eastham G.R., Heaton B.T., Iggo J.A., Tooze R.P., Whyman R., Zacchini S. Chem. Commun. 2000, 609–610. https://doi.org/10.1039/B001110J
  23. Moulton C.J. , Shaw B.L. J. Chem. Soc. Chem. Commun. 1976, 365–366. https://doi.org/10.1039/C39760000365
  24. Rodriguez C.J., Foster D.F., Eastham G.R., Cole-Hamilton G.R. Chem. Commun. 2004, 1720–1721. https://doi.org/10.1039/B404783D
  25. Rieu J.-P., Boucherle A., Cousse H., Mouzin G. Tetrahedron. 1986, 42, 4095–4131. https://doi.org/10.1016/S0040-4020(01)87634-1
  26. Dhall D., Sikka P., Kumar A., Mishra A. K. Oriental J. Chem. 2016, 32 (4), 1831–1838. https://doi.org/10.13005/ojc/320411
  27. Roque A.C.A.H., Santos D. de C., Reginato M.M., Reis A.K.C.A. J. Molecular Structure. 2021, 1233, 130027. https://doi.org/10.1016/j.molstruc.2021.130027
  28. El Ali B., Alper H. J. Mol. Catal. 1992, 77, 7–13. https://doi.org/10.1016/0304-5102(92)80179-K
  29. El Ali B., Alper H. J. Org. Chem. 1993, 58, 3595–3596. https://doi.org/10.1021/jo00065a028
  30. Simonato J-P., Walter T., Métivier P. J. Mol. Catal. A: Chem. 2001, 171, 91–94. https://doi.org/10.1016/S1381-1169(01)00114-5
  31. Simonato J.-P., J. Mol. Catal. A: Chem. 2003, 197, 61–64. https://doi.org/10.1016/S1381-1169(02)00676-3
  32. Okada M., Takeuchi K., Matsumoto K., Oku T., Choi J.-C. Org. Biomol. Chem. 2021, 19, 8727–8734. https://doi.org/10.1039/D1OB01060C
  33. Okada M., Takeuchi K., Matsumoto K., Oku T., Yoshimura T., Hatanaka M., Choi J.-C. Organometallics. 2022, 41, 1640–1648. https://doi.org/10.1021/acs.organomet.2c00138
  34. WangY, Ren W., Li J., Wang H., Shi Y. Org. Lett. 2014, 16, 5960–5963. https://doi.org/10.1021/ol502987f
  35. Wang Y., Ren W., Shi Y. Org. Biomol. Chem. 2015, 13, 8416–8419. https://doi.org/10.1039/C5OB01180A
  36. Wang Y., Zeng Y., Yang B., Shi Y. Org. Chem. Front. 2016, 3, 1131–1136. https://doi.org/10.1039/C6QO00187D
  37. Liu W., Ren W., Li J., Shi Y., Chang W., Shi Y. Org. Lett. 2017, 19, 1748–1751. https://doi.org/10.1021/acs.orglett.7b00507
  38. Ren W., Wang M., Guo J., Zhou J., Chu J., Shi Y., Shi Y. Org. Lett. 2022, 24, 886–891. https://doi.org/10.1021/acs.orglett.1c04231
  39. Ramakrishnan A., Bouwman E. ChemCatChem. 2024, 16, e202301717. https://doi.org/10.1002/cctc.202301717
  40. Eliseev O.L., Bondarenko T.N., Tsapkina M.V. Mendeleev Commun. 2022, 32, 253–255. https://doi.org/10.1016/j.mencom.2022.03.033
  41. Shuklov I.A., Dubrovina N.V., Kuhlein K., Burner A. Adv. Synth. Catal. 2016, 358, 3910–3931. https://doi.org/10.1002/adsc.201600768
  42. Shuklov I.A., Dubrovina N.V. Schulze J., Tietz W., Kuhlein K., Burner A. Arkivoc. 2012, (3) 66–75. https://doi.org/10.3998/ark.5550190.0013.306
  43. Ooka H., Inoue T., Itsuno S., Tanaka M. Chem. Commun. 2005, 1173–1175. https://doi.org/10.1039/B414646H
  44. Rucklidge A.J., Morris G.E., Cole-Hamilton D.J. Chem. Commun. 2005, 1176–1178. https://doi.org/10.1039/B414460K
  45. Morris D.E., (Monsanto Co.), U.S. Patent 4,377,708, 1983, Chem. Abstr., 1979, 91, 419917.
  46. Fulmer G.R., Miller A.J.M., Sherden N.H., Gottlieb H.E., Nudelman A., Stoltz B.M., Bercaw J.E., Goldberg K.I. Organometallics. 2010, 29, 2176–2179. https://doi.org/10.1021/om100106e
  47. Tsedilin A.M., Fakhrutdinov A.N., Eremin D.B., Zalesskiy S.S., Chizhov A.O., Kolotyrkina N.G., Ananikov V.P. Mendeleev Commun. 2015, 25, 454–456. https://doi.org/10.1016/j.mencom.2015.11.019
  48. Keil B., Herout V., Hudlicky M., Ernest I., Protiva M., Komers J.G.R., Moravek J. Laboratorni technika organicke chemie. Ed. B. Keil. Praha: Nakladatelstvi Československe academie ved, 1963.
  49. Общий практикум по органической химии. Ред. А.Н. Кост. М.: Мир, 1965, с. 514, 532.
  50. Meng Q.-Y., Wang, S., Huff G.S., König B. J. Am. Chem. Soc. 2018, 140, 3198–3201. https://doi.org/10.1021/jacs.7b13448
  51. Meng Q.-Y., Schirmer T.E., Berger A.L., Donabauer K., König, B. J. Am. Chem. Soc. 2019, 141, 11393–11397. https://doi.org/10.1021/jacs.9b05360
  52. Gaydou, M., Moragas T., Juliá-Hernández F., Martin R. J. Am. Chem. Soc. 2017, 139, 12161–12164. https://doi.org/10.1021/jacs.7b07637
  53. Mandrelli F., Blond A., James T., Kim H., List B. Angew. Chem. Int. Ed. Engl. 2019, 58, 11479–11482. https://doi.org/10.1002/anie.201905623
  54. Sahoo B., Bellotti P., Juliá-Hernández F., Meng Q.-Y., Crespi S., König B., R. Martin. Chem. Eur. J. 2019, 25, 9001–9005. https://doi.org/10.1002/chem.201902095
  55. Jin Y., Toriumi N., Iwasawa N. ChemSusChem. 2022, 15, e202102095. https://doi.org/10.1002/cssc.202102095
  56. Novikov V.L., Shestak O.P. Russ. Chem. Bull. 2013, 62 (10), 2171–2190. https://doi.org/10.1007/s11172-013-0316-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).