Coupled electroreduction of CO2 and H+ in the presence of substituted salts of 2,2'-bipyridine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of conjugate electroreduction of carbon dioxide and hydrogen in the presence of 2,2'-bipyridine and its N -substituted salts in the presence of acids with different pKa values was studied. It was revealed how the strength of the acid affects the efficiency of the process; in particular, it was determined that the presence of methylsulfonic acid in the system promotes the conjugate formation of hydrogen and the reduction of carbon dioxide to formic acid. Probable mechanisms for the reactions occurring have been proposed.

About the authors

E. V. Okina

National Research Ogarev Mordovia State University

L. A. Klimaeva

National Research Ogarev Mordovia State University

Email: l_klimaeva@mail.ru

D. B. Chugunov

National Research Ogarev Mordovia State University

S. G. Kostryukov

National Research Ogarev Mordovia State University

A. Sh. Kozlov

National Research Ogarev Mordovia State University

O. V. Tarasova

National Research Ogarev Mordovia State University

A. D. Yudina

National Research Ogarev Mordovia State University

References

  1. Jenkinson D.S., Adams D.E., Wild A. Nature. 1991, 351. 304-306. doi: 10.1038/351304a0
  2. Weimer T., Schaber K., Specht M., Bansi A. Energy Convers. Manag. 1996, 370020, 1351-1356. doi: 10.1016/0196-8904(95)00345-2
  3. Liu J.-L., Wang X., Li X.-S., Likozar B., Zhu A.-M. J. Phys. D Appl. Phys. 2020, 53, 253001. doi: 10.1088/1361-6463/ab7c04
  4. Jessop P.G., Jo� F., Tai C.-C. Coord. Chem. Rev. 2004, 248, 2425-2442. doi: 10.1016/j.ccr.2004.05.019
  5. Glockler G. Phys. Chem. 1958, 62, 1049-1054. doi: 10.1021/j150567a006
  6. Tanaka K. BCSJ. 1998, 71, 17-29. doi: 10.1246/bcsj.71.17
  7. Ren S., Jouli� D., Salvatore D., Torbensen K., Wang M., Robert M., Berlinguette C.P. Science. 2019, 365, 367-369. doi: 10.1126/science.aax4608
  8. Jin S., Hao Z., Zhang K., Yan Z., Chen J. Angew. Chem. 2021, 133, 20795-20816. doi: 10.1002/ange.202101818
  9. Zhu D.D., Liu J.L., Qiao S.Z. Adv. Mater. 2016, 28, 3423-3452. doi: 10.1002/adma.201504766
  10. Alberico E., Nielsen M. Chem. Commun. 2015, 51, 6714-6725. doi: 10.1039/C4CC09471A
  11. Dong K. Razzaq R., Hu Y., Ding K. Top Curr. Chem. 2017, 375, 23. doi: 10.1007/s41061-017-0107-x
  12. Qiao J., Liu Y., Hong F., Zhang J. Chem. Soc. Rev. 2014, 43, 631-675. doi: 10.1039/C3CS60323G
  13. Zheng Y., Vasileff A., Zhou X., Jiao Y., Jaroniec M., Qiao S.-Z. J. Am. Chem. Soc. 2019, 141, 7646-7659. doi: 10.1021/jacs.9b02124
  14. Boutin E., Robert M. Trends Chem. 2021, 3, 359-372. doi: 10.1016/j.trechm.2021.02.003
  15. Lim R. J., Xie M., Sk M.A., Lee J.-M., Fisher A., Wang X., Lim K.H. Catal. Today. 2014, 233, 169-180. doi: 10.1016/j.cattod.2013.11.037
  16. Specht M., Staiss F., Bandi A., Weimer T. Int. J. Hydrog. Energy. 1998, 23, 387-396. doi: 10.1016/S0360-3199(97)00077-3

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies