Gold-catalysed synthesis of 4-(trifluoromethyl)quinolinecarboxylates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An efficient method has been developed for the synthesis of 4-trifluoromethyl-substituted quinolinecarboxylates by the gold(I)-catalyzed reaction of 2’-amino-2,2,2-trifluoroacetophenones with substituted propiolates.

About the authors

A. Yu. Mitrofanov

Lomonosov Moscow State University

Email: mitrofanov@org.chem.msu.ru

D. A Kalugin

Lomonosov Moscow State University

Email: mitrofanov@org.chem.msu.ru

I. P Beletskaya

Lomonosov Moscow State University

Email: mitrofanov@org.chem.msu.ru

References

  1. Chu X.M., Wang C., Liu W., Liang L.L., Gong K.K., Zhao C.Y., Sun K.L. Eur. J. Med. Chem. 2019, 161, 101-117. doi: 10.1016/j.ejmech.2018.10.035
  2. Chen J., Liu H., Yang L., Jiang J., Bi G., Zhang G., Li G., Chen X. ACS Med. Chem. Lett. 2019, 10, 954-959. doi: 10.1021/acsmedchemlett.9b00118
  3. McDaniel T.J., Lansdell T.A., Dissanayake A.A., Azevedo L.M., Claes J., Odom A.L., Tepe J.J. Bioorg. Med. Chem. 2016, 24, 2441-2450. doi: 10.1016/j.bmc.2016.04.005
  4. Taylor R.D., Maccoss M., Lawson A.D.G. J. Med. Chem. 2014, 57, 5845-5859. doi: 10.1021/jm4017625
  5. Cretton S., Breant L., Pourrez L., Ambuehl C., Marcourt L., Ebrahimi S.N., Hamburger M., Perozzo R., Karimou S., Kaiser M., Cuendet M., Christen P. J. Nat. Prod. 2014, 77, 2304-2311. doi: 10.1021/np5006554
  6. Wu X.-S., Tang Y.-R., Liu J.-L., Wang L., Ren X.-M. Dalton Trans. 2019, 48, 13841-13849. doi: 10.1039/c9dt02928a
  7. Li S.P.-Y., Shum J., Lo K.K.-W. Dalton Trans. 2019, 48, 9692-9702. doi: 10.1039/c9dt00793h
  8. Kotlova I.A., Kolokolov F.A., Dotsenko V.V., Aksenov N.A., Aksenova I.V. Russ. J. Gen. Chem. 2019, 89, 2413-2419. doi: 10.1134/s1070363219120144
  9. Hu Z.-B., Jing Z.-Y., Li M.-M., Yin L., Gao Y.-D., Yu F., Hu T.-P., Wang Z., Song Y. Inorg. Chem. 2018, 57, 10761-10767. doi: 10.1021/acs.inorgchem.8b01389
  10. Liu J., Wang Y., Gong S., Duan W., Huang X. J. Braz. Chem. Soc. 2021, 32, 1270-1276. doi: 10.21577/0103-5053.20210029
  11. Zhu X., Wang Z., Liu J., Min X., Wang T., Fan X. Macromol. Rapid Commun. 2019, 40. doi: 10.1002/marc.201900135
  12. Cabrera P.J., Lee M., Sanford M.S. J. Am. Chem. Soc. 2018, 140, 5599-5606. doi: 10.1021/jacs.8b02142
  13. Desai N.C., Patel B.Y., Dave B.P. Med. Chem. Res. 2017, 26, 109-119. doi: 10.1007/s00044-016-1732-6
  14. Upadhyay A., Kushwaha P., Gupta S., Dodda R.P., Ramalingam K., Kant R., Goyal N., Sashidhara K.V. Eur. J. Med. Chem. 2018, 154, 172-181. doi: 10.1016/j.ejmech.2018.05.014
  15. Weyesa A., Mulugeta E. RSC Adv. 2020, 10, 20784-20793. doi: 10.1039/D0RA03763J
  16. Ajani O.O., Iyaye K.T., Ademosun O.T. RSC Adv. 2022, 12, 18594-18614. doi: 10.1039/D2RA02896D
  17. Zhou Y., Wang J., Gu Z., Wang S., Zhu W., Acenã, J.L., Soloshonok V.A., Izawa K., Liu H. Chem. Rev. 2016, 116, 422-518. doi: 10.1021/acs.chemrev.5b00392
  18. Zhu W., Wang J., Wang S., Gu Z., Aceña J.L., Izawa K., Liu H., Soloshonok V.A. J. Fluor. Chem. 2014, 167, 37-54. doi: 10.1016/j.jfluchem.2014.06.026
  19. Wang J., Sánchez-Roselló, M., Aceña J.L., Del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. Chem. Rev. 2014, 114, 2432-2506. doi: 10.1021/cr4002879
  20. Jiang B., Si Y.G. J. Org. Chem. 2002, 67, 9449-9451. doi: 10.1021/jo0204606
  21. Jiang B., Dong J.J., Jin Y., Du X.L., Xu M. Eur. J. Org. Chem. 2008, 2008, 2693-2696. doi: 10.1002/ejoc.200800121
  22. Wang Z.-H., Shen L.-W., Yang P., You Y., Zhao J.-Q., Yuan W.-C. J. Org. Chem. 2022, 87, 5804-5816. doi: 10.1021/acs.joc.2c00128
  23. Du X.L., Jiang B., Li Y.C. Tetrahedron. 2013, 69, 7481-7486. doi: 10.1016/j.tet.2013.06.017
  24. Dolna M., Nowacki M., Danylyuk O., Brotons-Rufes A., Poater A., Michalak M. J. Org. Chem. 2022, 87, 6115-6136. doi: 10.1021/acs.joc.2c00380
  25. Czerwiński P., Michalak M. J. Org. Chem. 2017, 82, 7980-7997. doi: 10.1021/acs.joc.7b01235
  26. Zhao B.C., Zhang Q.Z., Zhou W.Y., Tao H.C., Li Z.G. RSC Adv. 2013, 3, 13106-13109. doi: 10.1039/c3ra41991f
  27. Mitrofanov A.Yu., Bychkova V.A., Nefedov S.E., Beletskaya I.P. J. Org. Chem. 2020, 85, 14507-14515. doi: 10.1021/acs.joc.0c00913
  28. Mitrofanov A.Yu., Beletskaya I.P. J. Org. Chem. 2023, 88, 2367-2376. doi 0.1021/acs.joc.2c02780
  29. Митрофанов А.Ю., Бычкова В.А., Белецкая И.П. ЖОрХ. 2022, 58, 665-685.
  30. Mitrofanov A.Yu., Bychkova V.A., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 921-940. doi: 10.1134/S1070428022070016
  31. Pierce M.E., Parsons R.L., Radesca L.A., Lo Y.S., Silverman S., Moore J.R., Islam Q., Choudhury A., Fortunak J.M.D., Nguyen D., Luo C., Morgan S.J., Davis W.P., Confalone P.N., Chen C.-y., Tillyer R.D., Frey L., Tan L., Xu F., Zhao D., Thompson A.S., Corley E.G., Grabowski E.J.J., Reamer R., Reider P.J. J. Org. Chem. 1998, 63, 8536-8543. doi: 10.1021/jo981170l
  32. Moglie Y., Mascaró, E., Gutierrez V., Alonso F., Radivoy G. J. Org. Chem. 2016, 81, 1813-1818. doi: 10.1021/acs.joc.5b02528
  33. Wang M.-Z., Wong M.-K., Che C.-M. Chem. Eur. J. 2008, 14, 8353-8364. doi: 10.1002/chem.200800040

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies