Mass Spectra of New Heterocycles: XXVI. Electron Impact and Chemical Ionization Study of N-[5-Amino-2-thienyl]- and N-[2-(Methylsulfanyl)-1,3-thiazol-5-yl]isothioureas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of a representative series of previously unknown N -(5-amino-2-thienyl)- and N -[2-(methylsulfanyl)-1,3-thiazol-5-yl]isothioureas under electron ionization (70 eV) has been studied for the first time. 2-Thienylisothioureas form a fairly stable molecular ion ( I rel 11-25%), whereas there are no peaks of molecular ions in the mass spectra of 1,3-thiazolylisothioureas. The common direction of the decay of the molecular ion of 2-thienyl- and 1,3-thiazolylisothiourea is the breaking of the C-N bond in the isothiourea fragment with the localization of the charge on the imine nitrogen atom and the formation of the ion [R3SC≡NR2]+ ( I rel 34-100%), and for thienyl derivatives also the ion [ M - R3SC=NR2]+ (with the localization of the charge on the amine nitrogen atom). Moreover, the last ion is the main one ( I rel 91-100%). Peaks of [ M - MeSCN]+and [MeSCS]+ ions have also been identified in the spectra of 1,3-thiazolylisothioureas, the appearance of which is associated with the decay of the thiazole cycle in a molecular ion. In addition, unlike 2-thienylisothioureas, for the studied 1,3-thiazolylisothioureas, there is a break in the Chet-N bond with the localization of the charge on the thiazole-containing fragment.

About the authors

L. V Klyba

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: klyba@irioch.irk.ru

E. R Sanzheeva

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

N. A Nedolya

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

O. A Tarasova

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

References

  1. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2023, 58, 596-602.
  2. Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2023, 58, 776-781. doi: 10.1134/S1070428023050056
  3. Steppeler F., Iwan D., Wojaczyńska E., Wojaczyński J. Molecules. 2020, 25, 401. doi: 10.3390/molecules25020401
  4. Shakeel A., Altaf A.A., Qureshi A.M., Badshah A. J. Drug Des. Med. Chem. 2016, 2, 10-20. doi: 10.11648/j.jddmc.20160201.12
  5. Khan E., Khan S., Gul Z., Muhammad M. Critical Rev. Analyt. Chem. 2021, 51, 812-834. doi: 10.1080/10408347.2020.1777523
  6. Saeed A., Mustafa M.N., Zain-Ul-Abideen M., Shabir G., Erben M.F., Flörke U. J. Sulfur Chem. 2019, 40, 312-350. doi: 10.1080/17415993.2018.1551488
  7. Goncalves I.L., de Azambuja G.O., Kawano D.F., Eifler-Lima V.L. Mini. Rev. Org. Chem. 2018, 15, 28-35. doi: 10.2174/157019314666170518125219
  8. Li J., Shi L.-L., Chen J., Gong J., Yang Z. Synthesis. 2014, 46, 2007-2023. doi: 10.1055/s-0034-1378209
  9. Biswas A., Mondal H., Maji M.S. J. Heterocycl. Chem. 2020, 57, 3818-3844. doi: 10.1002/jhet.4119
  10. McLaughlin C., Smith A.D. Chem. Eur. J. 2021, 27, 1533-1555. doi: 10.1002/chem.202002059
  11. Saeed A., Flörke U., Erben M.F. J. Sulfur Chem. 2014, 35, 318-355. doi: 10.1080/17415993.2013.834904
  12. Blažek Bregović V., Basarić N., Mlinarić-Majerski K. Coord. Chem. Rev. 2015, 295, 80-124. doi: 10.1016/j.ccr.2015.03.011
  13. Sulthana M.T., Alagarsamy V., Chitra K. Med. Chem. (Sharjah, United Arab Emirates). 2021, 17, 352-368. doi: 10.2174/1573406416666200817153033
  14. Ma C., Wu A., Wu Y., Ren X., Cheng M. Archiv Pharm. (Weinheim, Germany). 2013, 346, 891-900. doi: 10.1002/ardp.201300276
  15. Siddiqui N., Alam M.S., Sahu M., Naim M.J., Yar M.S., Alam O. Bioorg. Chem. 2017, 71, 230-243. doi: 10.1016/j.bioorg.2017.02.009
  16. Pucko E., Matyja E., Koronkiewicz M., Ostrowski R.P., Kazimierczuk Z. Anticancer Res. 2018, 38, 2691-2705. doi: 10.21873/anticanres.12511
  17. Narendhar B., Chitra K., Alagarsamy V. Pharm. Chem. J. 2021, 55, 54-59. doi: 10.1007/s11094-021-02371-7
  18. Sperry J.B., Wright D.L. Curr. Opin. Drug Discov. Devel. 2005, 8, 723-740. doi: 10.1002/chin.200615242
  19. Handbook of Oligo- and Polythiophenes. Ed. D. Fichou. Weinheim: Wiley-VCH. 1999.
  20. Gupta V., Kant V. Sci. Int. 2013, 1, 253-260. doi: 10.17311/sciintl.2013.253.260
  21. Siddiqui N., Arshad M.F., Ahsan W., Alam M.S. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136-143.
  22. Grehn L. J. Heterocycl. Chem. 1978, 15, 81-87. doi: 10.1002/jhet.5570150118
  23. McCarthy W.C., Foss L.E. J. Org. Chem. 1977, 42, 1508-1510. doi: 10.1021/jo00429a004
  24. Al-Omran F., El-Khair A.A. J. Heterocycl. Chem. 2004, 41, 909-914. doi: 10.1002/jhet.5570410610
  25. Dolzhenko A.V. Heterocycles. 2011, 83, 1489-1525. doi: 10.3987/REV-11-701
  26. Venkatachalam T.K., Sudbeck E.A., Mao C., Uckun F.M. Bioorg. Med. Chem. Lett. 2001, 11, 523-528. doi: 10.1016/S0960-894X(01)00011-7
  27. Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. ChemistrySelect. 2020, 5, 5726-5731. doi: 10.1002/slct.202000577
  28. Nedolya N.A. Novel Chemistry Based on Isothiocyanates and Polar Organometallics. PhD Thesis. Utrech University, Netherlands, 1999.
  29. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2023, 59, 38-46.
  30. Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2023, 59, 62-72. doi: 10.1134/S1070428023010037

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies