Method for determining infectious and hemagglutinating titer of influenza A/Mallard Pennsylvania/10218/84 (H5N2) virus by changing the microviscosity of the viral membrane after interaction with phospholipid modifiers using cholesterol free liposomes as an example
- 作者: Kontarov N.A.1,2, Pogarskaya I.V.2, Dolgova E.I.2, Kontarova E.O.3, Pomazanov V.V.4, Gafarov R.R.4, Mardanly S.G.4, Yuminova N.V.2
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Mechnikov Research Institute for Vaccines and Sera
- Federal Scientific and Clinical Center of Federal Medical Biology Centre
- State University of Humanities and Technology
- 期: 卷 70, 编号 5 (2025)
- 页面: 471-476
- 栏目: TO VIROLOGIST’S AID
- URL: https://journals.rcsi.science/0507-4088/article/view/353630
- DOI: https://doi.org/10.36233/0507-4088-326
- EDN: https://elibrary.ru/atftvd
- ID: 353630
如何引用文章
全文:
详细
Introduction. The antiviral action of a number of drugs is associated with their modification of the lipid membrane of viruses. One of the possible mechanisms of such modification of the viral membrane is the extraction of cholesterol from the membranes of virions.
Objective of the study. A method has been developed for determining the infectious and hemagglutinating titer of avian influenza virus by changing the microviscosity of the viral membrane after incubation with phospholipid modifiers, using cholesterol-free liposomes consisting of phosphatidylcholine and phosphatidylethanolamine in a molar ratio of 1 : 2 for 48 hours as an example.
Materials and methods. The extraction process was confirmed by two methods: gel filtration with radioactively labeled liposomes and virions, and by changing the polarization value of the fluorescent probe 1-anilinonaphthalene-8-sulfonate anion (8-ANS) in the viral membrane.
Results. A correlation was found between the change in infectious and hemagglutinating titer and the microviscosity of the viral membrane.
Conclusion. In this regard, it seems possible to use this dependence to determine the infectious and hemagglutinating activity of the influenza virus within one serotype in clinical laboratory diagnostics, using various fluorescent probes. It should be noted that not only liposomes of a certain composition can be used as lipophilic modifiers of the viral membrane, but also such compounds as ethylene glycol, erythritol, glycerol.
作者简介
Nikolay Kontarov
I.M. Sechenov First Moscow State Medical University (Sechenov University); Mechnikov Research Institute for Vaccines and Sera
编辑信件的主要联系方式.
Email: kontarov@mail.ru
ORCID iD: 0000-0003-0030-4867
PhD (Biology), leading researcher at the laboratory of children’s viral infections
俄罗斯联邦, Moscow, 119991; Moscow, 115088Irina Pogarskaya
Mechnikov Research Institute for Vaccines and Sera
Email: kozyr81@mail.ru
ORCID iD: 0000-0003-3580-6277
PhD (Biology), leading researcher Department of Virology named after O.G. Andzhaparidze
俄罗斯联邦, Moscow, 115088Ekaterina Dolgova
Mechnikov Research Institute for Vaccines and Sera
Email: dolgovaev@mail.ru
ORCID iD: 0000-0001-8985-7569
junior researcher Department of Virology named after O.G. Andzhaparidze
俄罗斯联邦, Moscow, 115088Elena Kontarova
Federal Scientific and Clinical Center of Federal Medical Biology Centre
Email: kontarova@mail.ru
ORCID iD: 0000-0002-5550-7875
PhD (Medicine), radiologist
俄罗斯联邦, Moscow, 115682Vladimir Pomazanov
State University of Humanities and Technology
Email: ecolab@mail.ru
ORCID iD: 0000-0002-7336-9912
Dr Sci (Engineering), professor
俄罗斯联邦, Orekhovo-Zuevo, 142611Ramis Gafarov
State University of Humanities and Technology
Email: gafarov68@mail.ru
ORCID iD: 0009-0009-2869-7421
PhD (Biology)
俄罗斯联邦, Orekhovo-Zuevo, 142611Sefaddin Mardanly
State University of Humanities and Technology
Email: ecolab@mail.ru
ORCID iD: 0000-0003-3650-2363
Dr Sci (Medicine)
俄罗斯联邦, Orekhovo-Zuevo, 142611Nadezhda Yuminova
Mechnikov Research Institute for Vaccines and Sera
Email: yuminova@mail.ru
ORCID iD: 0000-0002-7723-4038
Dr Sci (Biology), chief researcher
俄罗斯联邦, Moscow, 115088参考
- Kingery-Wood J.E., Williams K.W., Sigal G.B., Whitesides G.M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 1992; 114(18): 7303–5. https://doi.org/10.1021/ja00044a057
- van Meer G., Davoust J., Simons K. Parameters affecting low pH-mediated fusion of liposomes with the plasma membrane of cells infected with influenza virus. Biochemistry. 1985; 24(14): 3593–602. https://doi.org/10.1021/bi00335a030
- Hendricks G.L., Weirich K.L., Viswanathan K., Li J., Shriver Z.H., Ashour J., et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza a virus. J. Biol. Chem. 2013; 288(12): 8061–73. https://doi.org/10.1074/jbc.m112.437202
- White J., Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl Acad. Sci. USA. 1980; 77(6): 3273–77. https://doi.org/10.1073/pnas.77.6.3273
- Sulczewski F.B., Liszbinski R.B., Romão P.R.T., Rodrigues Junior L.C. Nanoparticle vaccines against viral infections. Arch. Virol. 2018; 163(9): 2313–25. https://doi.org/10.1007/s00705-018-3856-0
- Hernandez L.D., Peters R.J., Delos S.E., Young J.A., Agard D.A., White J.M. Activation of a retroviral membrane fusion protein: soluble receptor-induced liposome binding of the ALSV envelope glycoprotein. J. Cell Biol. 1997; 139(6): 1455–64. https://doi.org/10.1083/jcb.139.6.1455
- McGill A.R., Markoutsa E., Mayilsamy K., Green R., Sivakumar K., Mohapatra S., et al. Acetate-encapsulated linolenic acid liposomes reduce SARS-CoV-2 and RSV infection. Viruses. 2023; 15(7): 1429. https://doi.org/10.3390/v15071429
- Grünewald K. Viral fusion: how Flu induces dimples on liposomes. EMBO J. 2010; 29(7): 1165-6. https://doi.org/10.1038/emboj.2010.35
- Hendricks G.L., Velazquez L., Pham S., Qaisar N., Delaney J.C., Viswanathan K., et al. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res. 2015; 116: 34–44. https://doi.org/10.1016/j.antiviral.2015.01.008
- Mahy B.W.J. Virology: A Practical Approach. IRL Press; 1985. https://doi.org/10.1136/jcp.38.11.1319-a
- Pagano R., Thompson T.E. Spherical lipid bilayer membranes. Biochim. Biophys. Acta. 1967; 144(3): 666–9. doi: 10.1016/0005-2760(67)90055-0
- Kontarov N.A., Lotte V.D., Kontarova E.O., Balaev N.V., Yuminova N.V., Zverev V.V. New method for measurement of size and concentration of lyposomes. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2009; 86(6): 95–8. https://elibrary.ru/rcdmzz (in Russian)
- Sabín J., Prieto G., Ruso J.M., Hidalgo-Alvarez R., Sarmiento F. Size and stability of liposomes: A possible role of hydration and osmotic forces. Eur. Phys. J. E. Soft Matter. 2006; 20(4): 401–08. https://doi.org/10.1140/epje/i2006-10029-9
补充文件






