Получение вирусоподобных частиц норовируса (Caliciviridae: Norovirus), содержащих белок VP1 энтеровируса Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Энтеровирусная (неполио) инфекция имеет широкое распространение во всём мире, регистрируется в форме спорадической заболеваемости и масштабных вспышек и может быть причиной такого тяжёлого поражения, как серозный менингит. Эпидемиологические исследования показали, что на территории Российской Федерации у больных энтеровирусным менингитом наиболее часто выявляется вариант энтеровируса (ЭВ) (Picornaviridae; Enterovirus) Echovirus 30 (Е30). Однако вакцины для профилактики заболевания, вызванного этим возбудителем, до настоящего времени не разработаны. Одним из перспективных современных направлений в плане создания вакцинных препаратов является использование вирусоподобных частиц (ВпЧ), в т.ч. химерных – содержащих биологические структуры вирусов, принадлежащих к различным видам.

Цель настоящей работы – получение ВпЧ норовируса (Caliciviridae; Norovirus), содержащих на своей поверхности белок VP1 Е30.

Материал и методы. В работе использовали нуклеотидные последовательности генов белков VP1 норовируса генотипа GII.4 и VP1 вируса E30 генотипа h, циркулирующих на территории России. На их основе сконструирован белок SN-VP1E30, в котором оболочечный (S) и шарнирный (hinge) регионы VP1 норовируса слиты в одну молекулу с полноразмерным VP1 E30. Данный белок экспрессировали в E. coli, очищали методом аффинной хроматографии, после чего характеризовали с использованием электрофореза в полиакриламидном геле (ПААГ) и иммуноблоттинга. ВпЧ визуализировали методом электронной микроскопии.

Результаты. Белок SN-VP1E30 экспрессировался в E. coli в нерастворимой форме. Подбор условий для получения его растворимой формы показал, что использование высоких концентраций сахарозы существенно повышает эффективность ренатурации. При сравнении электрофоретической подвижности денатурированного и неденатурированного препаратов SN-VP1E30 установлено, что большинство мономеров образуют соединения со значительной молекулярной массой. С помощью электронной микроскопии показано, что ренатурированный белок SN-VP1E30 самопроизвольно формирует in vitro полые ВпЧ диаметром ~50 нм.

Заключение. Показана возможность получения in vitro химерных ВпЧ норовируса, содержащих на своей поверхности белок VP1 циркулирующего на территории РФ варианта E30. Полученные частицы в дальнейшем могут быть использованы в разработке вакцинных препаратов для профилактики серозного менингита и других заболеваний, вызванных данным ЭВ.

Об авторах

Д. В. Новиков

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Автор, ответственный за переписку.
Email: novikov.dv75@mail.ru
ORCID iD: 0000-0001-7049-6935

Новиков Дмитрий Викторович, канд. биол. наук, доцент, ведущий научный сотрудник лаборатории иммунохимии

603950, Нижний Новгород, Россия

Россия

Д. А. Мелентьев

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор); ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» Министерства науки и высшего образования (Минобрнауки) России

Email: fake@neicon.ru
ORCID iD: 0000-0002-2441-6874

603950, Нижний Новгород, Россия

Россия

В. В. Мохонов

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-8542-5723

603950, Нижний Новгород, Россия

Россия

А. Ю. Кашников

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0003-1033-7347

603950, Нижний Новгород, Россия

Россия

Н. А. Новикова

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-3710-6648

603950, Нижний Новгород, Россия

Россия

В. А. Лапин

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор); ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» Министерства науки и высшего образования (Минобрнауки) России

Email: fake@neicon.ru
ORCID iD: 0000-0002-5905-5722

603950, Нижний Новгород, Россия

Россия

Е. В. Мохонова

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-9742-7646

603950, Нижний Новгород, Россия

Россия

В. В. Новиков

ФБУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор); ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» Министерства науки и высшего образования (Минобрнауки) России

Email: fake@neicon.ru
ORCID iD: 0000-0002-2449-7213

603950, Нижний Новгород, Россия

Россия

Список литературы

  1. Brouwer L., Moreni G., Wolthers K.C., Pajkrt D. World-wide prevalence and genotype distribution of enteroviruses. Viruses. 2021; 13(3): 434. https://doi.org/10.3390/v13030434
  2. Mao Q., Wang Y., Bian L., Xu M., Liang Z. EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg. Microbes Infect. 2016; 5(7): e75. https://doi.org/10.1038/emi.2016.73
  3. Zell R., Delwart E., Gorbalenya A.E., Hovi T., King A.M.Q., Knowles N.J., et al. ICTV virus taxonomy profile: Picornaviridae. J. Gen. Virol. 2017; 98(10): 2421–2. https://doi.org/10.1099/jgv.0.000911
  4. Xu W., Liu C., Yan L., Li J., Wang L., Qi Y., et al. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol. J. 2012; 9: 8. https://doi.org/10.1186/1743-422X-9-8
  5. Kupila L., Vuorinen T., Vainionpaa R., Hukkanen V., Marttila R.J., Kotilainen P. Etiology of aseptic meningitis and encephalitis in an adult population. Neurology. 2006; 66(1): 75–80. https://doi.org/10.1212/01.wnl.0000191407.81333.00
  6. Chang L.Y., Lin H.Y., Gau S.S., Lu C.Y., Hsia S.H., Huang Y.C., et al. Enterovirus A71 neurologic complications and long-term sequelae. J. Biomed. Sci. 2019; 26(1): 57. https://doi.org/10.1186/s12929-019-0552-7
  7. Abedi G.R., Watson J.T., Pham H., Nix W.A., Oberste M.S., Gerber S.I. Enterovirus and human parechovirus surveillance – United States, 2009–2013. MMWR. Morb. Mortal. Wkly. Rep. 2015; 64(34): 940–3. https://doi.org/10.15585/mmwr.mm6434a3
  8. Голицына Л.Н., Зверев В.В., Селиванова С.Г., Пономарёва Н.В., Кашников А.Ю., Созонов Д.В., и др. Этиологическая структура энтеровирусных инфекций в Российской Федерации в 2017–2018 гг. Здоровье населения и среда обитания. 2019; (8): 30–8. https://doi.org/10.35627/2219-5238/2019-317-8-30-38
  9. He X., Zhang M., Zhao C., Zheng P., Zhang X., Xu J. From monovalent to multivalent vaccines, the exploration for potential preventive strategies against hand, foot, and mouth disease (HFMD). Virol. Sin. 2021; 36(2): 167–75. https://doi.org/10.1007/s12250-020-00294-3
  10. Lema C., Torres C., Van der Sanden S., Cisterna D., Freire M.C., Gomez R.M., et al. Global phylodynamics of Echovirus 30 revealed differential behavior among viral lineages. Virology. 2019; 531: 79–92. https://doi.org/10.1016/j.virol.2019.02.012
  11. Xia M., Huang P., Sun C., Han L., Vago F.S., Li K., et al. Bioengineered norovirus S60 nanoparticles as a multifunctional vaccine platform. ACS Nano. 2018; 12(11): 10665–82. https://doi.org/10.1021/acsnano.8b02776
  12. Tan M., Huang P., Xia M., Fang P.A., Zhong W., McNeal M., et al. Norovirus P particle, a novel platform for vaccine development and antibody production. J. Virol. 2011; 85(2): 753–64. https://doi.org/10.1128/JVI.01835-10
  13. Kissmann J., Ausar S.F., Foubert T.R., Brock J., Switzer M.H., Detzi E.J., et al. Physical stabilization of Norwalk virus-like particles. J. Pharm. Sci. 2008; 97(10): 4208–18. https://doi.org/10.1002/jps.21315
  14. Yuan J., Shen L., Wu J., Zou X., Gu J., Chen J., et al. Enterovirus A71 proteins: Structure and function. Front. Microbiol. 2018; 9: 286. https://doi.org/10.3389/fmicb.2018.00286
  15. Dudek N.L., Perlmutter P., Aguilar M.I., Croft N.P., Purcell A.W. Epitope discovery and their use in peptide based vaccines. Curr. Pharm. Des. 2010; 16(28): 3149–57. https://doi.org/10.2174/138161210793292447
  16. Mohsen M.O., Gomes A.C., Vogel M., Bachmann M.F. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines. 2018; 6(3): 37. https://doi.org/10.3390/vaccines6030037
  17. Anggraeni M.R., Connors N.K., Wu Y., Chuan Y.P., Lua L.H., Middelberg A.P. Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine. 2013; 31(40): 4428–35. https://doi.org/10.1016/j.vaccine.2013.06.087
  18. Rivera-Hernandez T., Hartas J., Wu Y., Chuan Y.P., Lua L.H., Good M., et al. Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine. 2013; 31(15): 1950–5. https://doi.org/10.1016/j.vaccine.2013.02.013
  19. Tacket C.O., Sztein M.B., Losonsky G.A., Wasserman S.S., Estes M.K. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin. Immunol. 2003; 108(3): 241–7. https://doi.org/10.1016/s1521-6616(03)00120-7
  20. Zhao H., Li H.Y., Han J.F., Deng Y.Q., Zhu S.Y., Li X.F., et al. Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Sci. Rep. 2015; 5: 7878. https://doi.org/10.1038/srep07878
  21. Zhang C., Zhang X., Zhang W., Dai W., Xie J., Ye L., et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg. Microbes Infect. 2018; 7(1): 3. https://doi.org/10.1038/s41426-017-0005-x
  22. Le D.T., Müller K.M. In vitro assembly of virus-like particles and their applications. Life (Basel). 2021; 11(4): 334. https://doi.org/10.3390/life11040334

© Новиков Д.В., Мелентьев Д.А., Мохонов В.В., Кашников А.Ю., Новикова Н.А., Лапин В.А., Мохонова Е.В., Новиков В.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах