Flow cytometry evaluation of the rhesus monkey cellular immunity following the Zaire ebolavirus (Filoviridae; Ebolavirus: Zaire ebolavirus) experimental infection
- Authors: Borisevich G.V.1, Kirillova S.L.1, Shatokhina I.V.1, Lebedev V.N.1, Shagarova N.V.1, Syromyatnikova S.I.1, Andrus A.F.1, Koval’chuk E.A.1, Kirillov V.B.1, Bespalov M.L.2, Petrov A.A.1, Koval’chuk A.V.1, Pantyukhov V.B.1, Kutayev D.A.1, Borisevich S.V.1, Kuznetsov S.L.3
-
Affiliations:
- FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
- LLC «MedisСoM»
- Directorate of the Chief of the Radiation, Chemical, and Biological Defence Troops of the Armed Forces of the Ministry of Defence of the Russian Federation
- Issue: Vol 66, No 4 (2021)
- Pages: 289-298
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/118188
- DOI: https://doi.org/10.36233/0507-4088-64
- ID: 118188
Cite item
Full Text
Abstract
Introduction. The outbreaks of the Zaire ebolavirus (ZE) disease (ZED) that have arisen in the last decade determine the need to study the infection pathogenesis, the formation of specific immunity forming as well as the development of effective preventive and therapeutic means. All stages of fight against the ZED spread require the experimental infection in sensitive laboratory animals, which are rhesus monkeys in case of this disease .
The aim of the study is to evaluate the rhesus monkey cellular immunity following the ZE experimental infection by the means of flow cytometry (cytofluorimetry).
Material and methods. Male rhesus monkeys were intramuscularly infected by the dose of 15 LD50 (dose of the pathogen that causes 50% mortality of infected animals) of the ZE, the Zaire strain (ZEBOV). Levels of 18 peripheral blood lymphocyte populations of the animals before the ZE experimental infection and at the terminal stage of the disease were assessed using flow cytometry.
Results and discussion. The certain changes in the levels of the lymphocyte populations were observed following infection, indicating simultaneous activation and suppression of the immune system during ZED. The increase in content was observed for T-lymphocytes, T-helper and cytotoxic T-lymphocytes expressing the corresponding markers of early activation. The decrease was recorded for T-lymphocytes and double-positive T-lymphocytes expressing corresponding markers of late activation, as well as natural killer cells expressing CD8 (p < 0.05).
Conclusion. For the first time in the Russian Federation, the rhesus monkey cellular immunity before and after the ZE experimental infection was assessed using flow cytometry.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
G. V. Borisevich
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Author for correspondence.
Email: 48cnii@mil.ru
ORCID iD: 0000-0002-0843-9427
Galina V. Borisevich, Ph.D. (Biol.), Senior Researcher of the Department
141306, Sergiev Posad-6, Russia
Russian FederationS. L. Kirillova
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-1245-9225
141306, Sergiev Posad-6, Russia
Russian FederationI. V. Shatokhina
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-9503-5120
141306, Sergiev Posad-6, Russia
Russian FederationV. N. Lebedev
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-6552-4599
141306, Sergiev Posad-6, Russia
Russian FederationN. V. Shagarova
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0001-9523-8676
141306, Sergiev Posad-6, Russia
Russian FederationS. I. Syromyatnikova
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-1490-9448
141306, Sergiev Posad-6, Russia
Russian FederationA. F. Andrus
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-7430-9401
141306, Sergiev Posad-6, Russia
Russian FederationE. A. Koval’chuk
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-7279-196X
141306, Sergiev Posad-6, Russia
Russian FederationV. B. Kirillov
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-2916-0668
141306, Sergiev Posad-6, Russia
Russian FederationM. L. Bespalov
LLC «MedisСoM»
Email: fake@neicon.ru
ORCID iD: 0000-0003-3220-6153
127254, Moscow, Russia
Russian FederationA. A. Petrov
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-9714-2085
141306, Sergiev Posad-6, Russia
Russian FederationA. V. Koval’chuk
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-9681-9891
141306, Sergiev Posad-6, Russia
Russian FederationV. B. Pantyukhov
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-1313-2059
141306, Sergiev Posad-6, Russia
Russian FederationD. A. Kutayev
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0001-9009-4909
141306, Sergiev Posad-6, Russia
Russian FederationS. V. Borisevich
FSBI «Central Scientific Research Institute No. 48» of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-6742-3919
141306, Sergiev Posad-6, Russia
Russian FederationS. L. Kuznetsov
Directorate of the Chief of the Radiation, Chemical, and Biological Defence Troops of the Armed Forces of the Ministry of Defence of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-2705-8774
119160, Moscow, Russia
Russian FederationReferences
- WHO. Ebola virus disease Democratic Republic of Congo: external situation report 98/ 2020. Available at: https://www.who.int/publications/i/item/10665-332654 (accessed 16 August 2021).
- Cenciarelli O., Gabbarini V., Pietropaoli S., Maliziaa A., Tamburrinic A., Ludovicic G.M., et al. Viral bioterrorism: learning the lesson of Ebola virus in West Africa 2013–2015. Virus. Res. 2015; 210(12): 318–26. https://doi.org/10.1016/j.virusres.2015.09.002
- Wieland E., Shipkova M. Lymphocyte surface molecules as immune activation biomarkers. Clin. Biochem. 2016; 49(4-5): 347–54. https://doi.org/10.1016/j.clinbiochem.2015.07.099
- Wauquier N., Becquart P., Padilla C., Baize S., Leroy E.M. Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 2010; 4(10): e837. https://doi.org/10.1371/journal.pntd.0000837
- Dahlke C., Lunemann S., Kasonta R., Kreuels B., Schmiedel S., Ly M.L., et al. Comprehensive characterization of cellular immune responses following Ebola virus infection. J. Infect. Dis. 2017; 215(2): 287–92. https://doi.org/10.1093/infdis/jiw508
- Wilson J.A., Hart M.K. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J. Virol. 2001; 75(6): 2660–4. https://doi.org/10.1128/JVI.75.6.2660-2664.2001
- Warfield K.L., Olinger G.G. Protective role of cytotoxic T lymphocytes in filovirus hemorrhagic fever. J. Biomed. Biotechnol. 2011; 2011: 984241. https://doi.org/10.1155/2011/984241e
- Bente D., Gren J., Strong J.E., Feldmann H. Disease modeling for Ebola and Marburg viruses. Dis. Model. Mech. 2009; 2(1-2): 12–7. https://doi.org/10.1242/dmm.000471
- Хаитов Р.М. Иммунология: структура и функции иммунной системы: учебное пособие. М.: ГЭОТАР-Медиа; 2019.
- Хайдуков С.В., Зурочка А.В., Тотолян А.А., Черешнев В.А. Основные и малые популяции лимфоцитов периферической крови человека и их нормативные значения (методом многоцветного цитометрического анализа). Медицинская иммунология. 2009; 11(2-3): 227–38. https://doi.org/10.15789/1563-0625-2009-2-3-227-238.
- Лапин Б.А. К вопросу об использовании в медицинских экспериментах лабораторных приматов. Патологическая физиология и экспериментальная терапия. 2010; (2): 3–6.
- Пшеничнов В.А., Махлай А.А., Михайлов В.В. Исследования с вирусами Марбург, Ласса и Эбола. Вопросы вирусологии. 1993; 38(2): 54–9.
- Sestak K., Scheiners C., Wu X.W., Hollemweguer E. Identification of anti-human CD antibodies reactive with rhesus macaque peripheral blood cells. Vet. Immunol. Immunopathol. 2007; 119(1-2): 21–6. https://doi.org/10.1016/j.vetimm.2007.06.011
- Хайдуков С.В., Байдун Л.В., Зурочка А.В., Тотолян А.А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов». Российский иммунологический журнал. 2014; (4): 974–92. https://doi.org/10.15789/1563-0625-2012-3-255-268
- Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа. Медицинская иммунология. 2015; 17(1): 19–26. https://doi.org/0.15789/1563-0625-2015-1-19-26
- Telford W.G., Babin S.A., Khorev S.V., Rowe S.H. Green fiber lasers: an alternative to traditional DPSS green lasers for flow cytometry. Cytometry A. 2009; 75(12): 1031–9. https://doi.org/10.1002/cyto.a.20790
- Hammerbeck C., Goetz C., Bonnevier J. Primary and secondary antibodies and flow cytometry controls. In: Flow Cytometry Basics for the Non-Expert. Cham: Springer; 2018: 75–103. https://link.springer.com/chapter/10.1007%2F978-3-319-98071-3_6
- Лакин Г.Ф. Биометрия: Учебное пособие. М.: Высшая школа; 1990.
- Reed D.S., Hensley L.E., Geisbert J.B., Jahrling P.B., Geisbert T.W. Depletion of Peripheral Blood T Lymphocytes and NK Cells During the Course of Ebola Hemorrhagic Fever in Cynomolgus Macaques. Viral. Immunol. 2004; 17(3): 390–400. https://doi.org/10.1089/vim.2004.17.390
- Sanchez A., Lukwiya M., Bausch D., Mahanty S., Sanchez A.J., Wagoner K.D., et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J. Virol. 2004; 78(190): 10370–7. https://doi.org/10.1128/JVI.78.19.10370-10377.2004
- McElroya A.K., Akondyc R.S., Davisc C.W., Ellebedyc A.H., Mehtae A.K., Krafte C.S., et al. Human Ebola virus infection results in substantial immune activation. PNAS. 2015; 112(15): 4719–24. https://doi.org/10.1073/pnas.1502619112
- Cimini E.С., Viola D., Cabeza-Cabrerizo M., Romanelli А., Tumino N., Sacchi A., et al. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Trop. Dis. 2017; 11(5): e0005645. https://doi.org/10.1371/journal.pntd.0005645
- Addison E.G., North J., Bakhsh I., Marden C., Haq S., Al-Sarraj S., et al. Ligation of CD8alpha on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology. 2005; 116(3): 354–61. https://doi.org/10.1111/j.1365-2567.2005.02235.x
Supplementary files
