Ultrastructural organization and reproduction of virions in Vero (E6) cells in influenza A/H1N1 pmd09 virus monoinfection and coinfection with SARS-CoV-2 (Delta and Omicron strains)

Cover Image

Cite item

Full Text

Abstract

Introduction. RNA-containing viruses, especially influenza viruses, are of high epidemiological significance. The manifestation of COVID-19 has led to the registration of coinfection cases, the pathogenesis of which is poorly studied. The Vero (E6) cell line is widely used to study the morphogenesis of various viruses, including influenza and coronavirus.

The aim of the work is to study the ultrastructure of Vero (E6) cells and the reproduction of viral particles during monoinfection with the influenza A virus and coinfection of this virus with two SARS-CoV-2 genovariants in dynamics 6, 18 and 24 hours after inoculation.

Materials and methods. The Vero (E6) cell line model was used for in vitro study of the viral infection effects and an analysis of the dynamics of changes in the number of intracellular viral particles. The study involved 4 experimental groups: Vero (E6) cells mono-infected with the influenza virus strain A/H1N1 pmd09 at a dose of 0.1 MOI; Vero (E6) cells co-infected with the influenza virus strain A/H1N1 pmd09 and Delta strain of SARS-CoV-2 at a total dose of 0.1 MOI; Vero (E6) cells co-infected with the influenza virus strain A/H1N1 pmd09 and Omicron strain of SARS-CoV-2 at a total dose of 0.1 MOI. In each study group, cells were monitored at time points of 6, 18, and 24 hours.

Results. After 6 h, no pathological structures were detected in all groups, except for virus-containing transport vesicles. After 18 h, vacuolization of the ER of varying degree was noted in all the studied groups. After 24 h, ultrastructural changes, namely vacuolization of organelles and/or compaction of the cytoplasm, were encountered in all groups comparatively more frequently than at 6 h and 18 h time points. . The dynamics of the number of viral particles increased significantly by 24 h time point in the monoinfection group. However, none of the coinfection groups demonstrated a tendency for the number of viral particles to change, since no statistically significant differences were found between the 6 h, 18 h, and 24 h stages.

Conclusion. The results obtained suggested that the interaction between A/H1N1 pmd09 and SARS-CoV-2 viruses contributed to an overall decrease in the formation of new virions in Vero (E6) cells in both cases of coinfection.

About the authors

Ksenia F. Emtsova

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: k.emtsova@g.nsu.ru
ORCID iD: 0009-0003-5165-5357

Trainee Researcher, Department of Microscopic Research

Russian Federation, 630559, Novosibirsk Region, Koltsovo

Ekaterina V. Spiridonova

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: spiridonova_ev@vector.nsc.ru
ORCID iD: 0009-0006-8655-6713

Trainee Researcher, Department of Microscopic Research

Russian Federation, 630559, Novosibirsk Region, Koltsovo

Vladimir V. Omigov

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Author for correspondence.
Email: omigov_vv@vector.nsc.ru
ORCID iD: 0000-0002-2028-6099

PhD (Medicine), Leading Researcher

Russian Federation, 630559, Novosibirsk Region, Koltsovo

Anastasia A. Moiseeva

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: moiseeva_aa@vector.nsc.ru
ORCID iD: 0000-0001-7048-2357

junior researcher Department of Zoonotic Infections and Influenza

Russian Federation, 630559, Novosibirsk Region, Koltsovo

Elena I. Danilenko

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: danilenko_ev@vector.nsc.ru
ORCID iD: 0009-0007-8106-7037

junior researcher Department of Zoonotic Infections and Influenza

Russian Federation, 630559, Novosibirsk Region, Koltsovo

Oleg S. Taranov

State Scientific Center for Virology and Biotechnology «Vector» of the Federal Service for Surveillance in the Sphere of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092

Head of Department of Microscopic Research

Russian Federation, 630559, Novosibirsk Region, Koltsovo

References

  1. Matrosovich M.N., Gambaryan A.S., Teneberg S., Piskarev V.E., Yamnikova S.S., Lvov D.K., et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997; 233(1): 224–34. https://doi.org/10.1006/viro.1997.8580
  2. Wu D., Wu T., Liu Q., Yang Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis. 2020; 94: 44–8. https://doi.org/10.1016/j.ijid.2020.03.004
  3. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2022; 602(7896): 300–6. https://doi.org/10.1038/s41586-021-04266-9
  4. Muik A., Quandt J., Lui B.G., Bacher M., Lutz S., Grünenthal M., et al. Immunity against conserved epitopes dominates after two consecutive exposures to SARS-CoV-2 Omicron BA.1. Cell Rep. 2024; 43(8): 114567. https://doi.org/10.1016/j.celrep.2024.114567
  5. Wu X., Cai Y., Huang X., Yu X., Zhao L., Wang F., et al. Coinfection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerg. Infect. Dis. 2020; 26(6): 1324–6. https://doi.org/10.3201/eid2606.200299
  6. Yue H., Zhang M., Xing L., Wang K., Rao X., Liu H., et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J. Med. Virol. 2020; 92(11): 2870–3. https://doi.org/10.1002/jmv.26163.
  7. Rezaee D., Bakhtiari S., Jalilian F.A., Doosti-Irani A., Asadi F.T., Ansari N. Coinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus during the COVID-19 pandemic. Arch. Virol. 2023; 168(2): 53. https://doi.org/10.1007/s00705-022-05628-y
  8. Nowak M.D., Sordillo E.M., Gitman M.R., Paniz Mondolfi A.E. Coinfection in SARS-CoV-2 infected patients: where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020; 92(10): 1699–700. https://doi.org/10.1002/jmv.25953
  9. Eymieux S., Rouillé Y., Terrier O., Seron K., Blanchard E., Rosa-Calatrava M., et al. Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cell. Mol. Life Sci. 2021; 78(7): 3565–76. https://doi.org/10.1007/s00018-020-03745-y
  10. Barreto-Vieira D.F., da Silva M.A.N., Garcia C.C., Miranda M.D., Matos A.D.R., Caetano B.C., et al. Morphology and morphogenesis of SARS-CoV-2 in Vero-E6 cells. Mem. Inst. Oswaldo Cruz. 2021; 116: e200443. https://doi.org/10.1590/0074-02760200443
  11. Chen P.L., Tzeng T.T., Hu A.Y., Wang L.H., Lee M.S. Development and evaluation of vero cell-derived master donor viruses for influenza pandemic preparedness. Vaccines (Basel). 2020; 8(4):626. https://doi.org/10.3390/vaccines8040626
  12. Cao Y.C., Deng Q.X., Dai S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: an evaluation of the evidence. Travel Med. Infect. Dis. 2020; 35: 101647. https://doi.org/10.1016/j.tmaid.2020.101647
  13. Ayari A., Rosa-Calatrava M., Lancel S., Barthelemy J., Pizzorno A., Mayeuf-Louchart A., et al. Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun. Biol. 2020; 3(1): 237. https://doi.org/10.1038/s42003-020-0965-6
  14. Barreto-Vieira D.F., da Silva M.A.N., de Almeida A.L.T., Rasinhas A.D.C., Monteiro M.E., Miranda M.D., et al. SARS-CoV-2: ultrastructural characterization of morphogenesis in an in vitro system. Viruses. 2022; 14(2): 201. https://doi.org/10.3390/v14020201
  15. Martin A.J., Jans D.A. Antivirals that target the host IMPα/β1-virus interface. Biochem. Soc. Trans. 2021; 49(1): 281–95. https://doi.org/10.1042/bst20200568

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of ultrastructural changes in Vero (E6) cells in influenza A/H1N1 pmd09 virus monoinfection. Electron diffraction patterns А, B, and C correspond to the 6h stage, D and E to the 18h stage, and F and G to the 24h stage. А – a section of the cell cytoplasm with optically empty zones representing ER cell profiles with focal vacuolization (arrows). Scale bar is 1 μm; B – a section of the cell cytoplasm with virus-containing transport vesicles (arrows). Scale bar is 500 nm; C – a section of the cell cytoplasm with vacuolated ER cavities (arrows). Multiple adherent viral particles are localized along the plasma membrane. Scale bar is 2 μm; D – a section of the cell cytoplasm with vesicles (V) and a nucleus (N) with signs of invagination of the nuclear membranes (arrow). Electron diffraction pattern. Scale bar is 1 μm; E – a section of the cell cytoplasm containing A/H1N1 pmd09 viral particles (arrows). Scale bar is 500 nm; F – a section of a cell with sharply cleared hyaloplasm, a large number of membrane structures and free viral particles (arrows). Scale bar is 1 μm; G – a fragment of the cell cytoplasm with a nucleus (N). The karyoplasm is cleared relative to the hyaloplasm. Scale bar is 1 μm; H – a «Bar-plot» graph reflecting the dynamics of changes in the number of viral particles per cell at stages 6, 18 and 24 h.

Download (806KB)
3. Fig. 2. Dynamics of ultrastructural changes in Vero (E6) cells coinfected with the A/H1N1 pmd09 influenza virus and the Delta strain of SARS-CoV-2. Electron diffraction patterns А, B, and C correspond to the 6-h stage, D and E to the 18-h stage, and F and G to the 24-h stage. А – a cell region demonstrating high synthetic activity: multiple lumens of the Golgi apparatus and rER (arrows) are visible, with signs of vacuolization in places. Scale bar is 2 μm; B – fragments of the membrane with microvilli and viral particles in the adhesion state (arrows). Scale bar is 500 nm; C – sections of two preserved cells. The cell in the upper part of the electronogram has a comparatively denser hyaloplasm, in which vesicles containing electron-dense substance are localized (arrow). N – nucleus. Scale bar is 2 μm; D – a section of the cell cytoplasm with high synthetic activity, expressed in vacuolization of the ER profiles (arrows). Scale bar is 2 μm; E – a section of the cell hyaloplasm with virus-containing transport vesicles (arrows) near the nucleus (N). Scale bar is 500 nm; F – a fragment of the cell cytoplasm with viral particles localized along the periphery of the vesicular membrane (arrow). Scale bar is 1 μm; G – a section of the cell nucleus (N) with signs of invagination of the nuclear membranes (arrow). Scale bar is 1 μm; H – a «Bar-plot» graph reflecting the dynamics of changes in the number of viral particles per cell at stages 6, 18 and 24 h.

Download (758KB)
4. Fig. 3. Dynamics of ultrastructural changes in Vero (E6) cells coinfected with the A/H1N1 pmd09 influenza virus and the Omicron strain of SARS-CoV-2. Electron diffraction pattern A corresponds to the 6-h stage, B – to the 18-h stage, and C – to the 24-h stage. А – a section of the cell cytoplasm with organelles in a state of vacuolation (arrows). Scale bar is 500 nm; В – a section of the cell hyaloplasm with profiles of the Golgi complex (GC), some of which have a double membrane (solid arrows) and vesicles near to it (V); free viral particles are localized in the hyaloplasm (dashed arrows). Scale bar is 500 nm; C – a general electronogram of a cell in a state of destruction. The hyaloplasm (H) has an increased density. The nucleus (N) contains a nucleolus (Ns), the chromatin is compacted. Scale bar is 1 μm; D – a «Bar-plot» graph reflecting the dynamics of changes in the number of viral particles per cell at stages 6, 18 and 24 h.

Download (369KB)

Copyright (c) 2025 Emtsova K.F., Spiridonova E.V., Omigov V.V., Moiseeva A.A., Danilenko E.I., Taranov O.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».