Effect of inactivated whole-virion concentrated purified vaccine for the prevention of COVID-19 on clinical and biochemical blood parameters of immature rats

Cover Page

Cite item

Full Text

Abstract

Introduction. The prevalence of new coronavirus infection (COVID-19) in 2021-2022 in the pediatric population was 9.5%, and fatal outcomes began to be recorded. In 2022–2023, the proportion of children infected with COVID-19 increased to 18%. Developing a vaccine for the pediatric population is an urgent task.

The aim of the study is to explore the effect of the vaccine on the parameters of general and biochemical blood tests in immature rats.

Materials and methods. The study was performed on 112 immature rats (60 females, 52 males) of the Wistar line. Animals were randomized into groups that received the CoviVac vaccine at doses of 0.125, 0.25 and 0.5 mL/animal or placebo (0.5 mL/animal), intramuscularly on days 1, 15, 29 and 43 of the experiment. General and biochemical blood tests were performed twice, on the 57th and 71st days.

Results. Oligocythemia (0.25 and 0.5 mL/animal, p < 0.05), leukocytosis and thrombocytopenia (0.5 mL/animal, p < 0.05) were recorded in males. Monocytopenia (0.5 mL/animal, p < 0.05) and leukopenia (0.25 mL/animal, p < 0.05) were established in females. In males, an increase in the amount of globulins and total protein (0.5 mL/animal), a decrease in the A/G ratio (doses 0.25 and 0.5 mL/animal), a decrease in the cholesterol level (0.125 mL/animal) were detected. In females, an increase in the amount of albumin and total protein (0.5 mL/animal, p < 0.05), a decrease in the level of triglycerides (0.125, 0.25, 0.5 mL/animal, placebo, p < 0.05), a decrease in the level of lactate dehydrogenase, triglycerides and urea (0.25 mL/animal, p < 0.05) were recorded.

Conclusion. The safety of the CociVac vaccine in relation to clinical and biochemical blood parameters has been demonstrated.

About the authors

Aleksandra A. Siniugina

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: sinyugina@chumakovs.su
ORCID iD: 0000-0002-7251-6570

Cand. Sci. (Med.), Head of Quality and Innovation Development 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Natalya A. Lycheva

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Author for correspondence.
Email: Lycheva_na@chumakovs.su
ORCID iD: 0000-0002-5842-5728

Cand. Sci. (Biol.), Deputy Head of the Department for Preclinical Research 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Anastasia A. Saprykina

Research-and-manufacturing company «HOME OF PHARMACY» Joint Stock company

Email: saprykina.aa@doclinika.ru
ORCID iD: 0000-0002-7588-3982

Junior Research Fellow

Russian Federation, 188663, urban settlement Kuzmolovsky, Vsevolozhsky district, Leningrad region

Kirill L. Kryshen’

Research-and-manufacturing company «HOME OF PHARMACY» Joint Stock company

Email: kryshen.kl@doclinika.ru
ORCID iD: 0000-0003-1451-7716

Cand. Sci. (Biol.), Head of the Department of Specific Toxicology and Microbiology 

Russian Federation, 188663, urban settlement Kuzmolovsky, Vsevolozhsky district, Leningrad region

Vasiliy D. Apolokhov

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: apolohov_vd@chumakovs.su
ORCID iD: 0000-0002-9978-222X

Researcher

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Anastasiya D. Chernavtseva

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: chernavtseva_ad@chumakovs.su
ORCID iD: 0009-0009-6232-7512

Virologist of the department of preclinical studies and diagnostic drugs 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Anastasiya A. Kovpak

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: kovpak_aa@chumakovs.su
ORCID iD: 0000-0003-3200-763X

Head of the group of purification processes and formulation of finished dosage forms 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Yuriy Yu. Ivin

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: ivin_uu@chumakovs.su
ORCID iD: 0000-0003-0995-7944

Head of the Department for Development and Implementation of Innovative and Semi-Industrial Technologies 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Anastasia N. Piniaeva

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: pinyaeva_an@chumakovs.su
ORCID iD: 0000-0001-5381-2393

Cand. Sci. (Biol.), Chief technologist 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

Marina N. Makarova

Research-and-manufacturing company «HOME OF PHARMACY» Joint Stock company

Email: makarova.mn@doclinika.ru
ORCID iD: 0000-0003-3176-6386

D. Sci. (Med.), Director 

Russian Federation, 188663, urban settlement Kuzmolovsky, Vsevolozhsky district, Leningrad region

Valery G. Makarov

Research-and-manufacturing company «HOME OF PHARMACY» Joint Stock company

Email: makarov.vg@doclinika.ru
ORCID iD: 0000-0002-2447-7888

D. Sci. (Med.), Scientific supervisor 

Russian Federation, 188663, urban settlement Kuzmolovsky, Vsevolozhsky district, Leningrad region

Aidar A. Ishmukhametov

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Village of Institute of Poliomyelitis

Email: ishmukhametov@chumakovs.su
ORCID iD: 0000-0001-6130-4145

D. Sci. (Med.), Prof., Academician of the Russian Academy of Sciences,General manager 

Russian Federation, Settlement Moskovskiy, 108819, Moscow

References

  1. Musaelyan O.A. Features of the course and inflammatory markers in children with coronavirus infection COVID-19: Diss. Stavropol’; 2024. (in Russian)
  2. Elkina T.N., Gribanova O.A., Pirozhkova N.I., Likhanova M.G., Kuznetsova A.S. The comparative characteristics of the fourth and the fifth waves of the new coronavirus infection in children. Mat’ i ditya v Kuzbasse. 2023; (1): 30–7. https://doi.org/10.24412/2686-7338-2023-1-30-37 https://elibrary.ru/kqnshp (in Russian)
  3. Chepel’ T.V. COVID-19 and pediatric practice. In: Current Issues of Children and Adolescents Health: Proceedings of the Scientific and Practical Conference [Aktual’nye voprosy zdorov’ya detei i podrostkov: Materialy nauchno-prakticheskoi konferentsii]. Khabarovsk;2020:26–31. https://elibrary.ru/exsvfz (in Russian)
  4. Vasil’eva E.I. Physical Development of Children: An Educational and Methodological Guide for Foreign Students [Fizicheskoe razvitie detei: uchebno-metodicheskoe posobie dlya inostrannykh studentov]. Irkutsk; 2013. (in Russian)
  5. Yuansheng S., Gruber M., Matsumoto M. Overview of global regulatory toxicology requirements for vaccines and adjuvants. J. Pharmacol. Toxicol. Methods. 2012; 65(2): 49–57. https://doi.org/10.1016/j.vascn.2012.01.002
  6. Markova I.V. Pharmacological study of age-related features in the action of medicines offered for clinical study in pediatric practice: Methodological recommendations. Moscow; 1988. (in Russian)
  7. Raveendran A.V., Jayadevan R., Sashidharan S. Long COVID: An overview. Diabetes Metab. Syndr. 2021; 15(3): 869–75. https://doi.org/10.1016/j.dsx.2021.04.007
  8. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21(3): 133–46. https://doi.org/10.1038/s41579-022-00846-2
  9. Lopez-Leon S., Wegman-Ostrosky T., Ayuzo del Valle N.C., Perelman C., Sepulveda R., Rebolledo P.A., et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci. Rep. 2022; 12(1): 9950. https://doi.org/10.1038/s41598-022-13495-5
  10. Korompoki E., Gavriatopoulou M., Fotiou D., Ntanasis-Stathopoulos I., Dimopoulos M.A., Terpos E. Late-onset hematological complications post COVID-19: an emerging medical problem for the hematologist. Am. J. Hematol. 2022; 97(1): 119–28. https://doi.org/10.1002/ajh.26384
  11. Sahu K.K., Borogovac A., Cerny J. COVID-19 related immune hemolysis and thrombocytopenia. J. Med. Virol. 2021; 93(2): 1164–70. https://doi.org/10.1002/jmv.26402
  12. Hopp M.T., Rathod D.C., Imhof D. Host and viral proteins involved in SARS-CoV-2 infection differentially bind heme. Protein Sci. 2022; 31(11): e4451. https://doi.org/10.1002/pro.4451
  13. Lechuga G.C., Souza-Silva F., Sacramento C.Q., Trugilho M.R.O., Valente R.H., Napoleão-Pêgo P., et al. SARS-CoV-2 proteins bind to hemoglobin and its metabolites. Int. J. Mol. Sci. 2021; 22(16): 9035. https://doi.org/10.3390/ijms22169035
  14. Rosa A., Pye V.E., Graham C., Muir L., Seow J., Ng K.W., et al. SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Sci. Adv. 2021; 7(22): eabg7607. https://doi.org/10.1126/sciadv.abg7607
  15. Freeman S.L., Oliveira A.S.F., Gallio A.E., Rosa A., Simitakou M.K., Arthur C.J., et al. Heme binding to the SARS-CoV-2 spike glycoprotein. J. Biol. Chem. 2023; 299(8): 105014. https://doi.org/10.1016/j.jbc.2023.105014
  16. Dai L., Zheng T., Xu K., Han Y., Xu L., Huang E., et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell. 2020; 182(3): 722–33.e11. https://doi.org/10.1016/j.cell.2020.06.035
  17. Dieterle M.E., Haslwanter D., Bortz R.H. 3rd, Wirchnianski A.S., Lasso G., Vergnolle O., et al. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. Cell Host Microbe. 2020; 28(3): 486–96.e6. https://doi.org/10.1016/j.chom.2020.06.020
  18. Zhu F.C., Guan X.H., Li Y.H., Huang J.Y., Jiang T., Hou L.H., et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020; 396(10249): 479–88. https://doi.org/10.1016/s0140-6736(20)31605-6
  19. Zhu F.C., Li Y.H., Guan X.H., Hou L.H., Wang W.J., Li J.X., et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395(10240): 1845–54. https://doi.org/10.1016/s0140-6736(20)31208-3
  20. Palacios R., Patiño E.G., de Oliveira Piorelli R., Conde M.T.R.P., Batista A.P., Zeng G., et al. Double-blind, randomized, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac – PROFISCOV: a structured summary of a study protocol for a randomized controlled trial. Trials. 2020; 21(1): 853. https://doi.org/10.1186/s13063-020-04775-4
  21. Armengaud J., Delaunay-Moisan A., Thuret J.Y., van Anken E., Acosta-Alvear D., Aragón T., et al. The importance of naturally attenuated SARS-CoV-2 in the fight against COVID-19. Environ. Microbiol. 2020; 22(6): 1997–2000. https://doi.org/10.1111/1462-2920.15039
  22. Fidel P.L. Jr, Noverr M.C. Could an unrelated live attenuated vaccine serve as a preventive measure to dampen septic inflammation associated with COVID-19 infection? mBio. 2020; 11(3): e00907–20. https://doi.org/10.1128/mbio.00907-20
  23. Ghorbani A., Zare F., Sazegari S., Afsharifar A., Eskandari M.H., Pormohammad A. Development of a novel platform of virus-like particle (VLP)-based vaccine against COVID-19 by exposing epitopes: an immunoinformatics approach. New Microbes New Infect. 2020; 38: 100786. https://doi.org/10.1016/j.nmni.2020.100786
  24. Pushko P., Tretyakova I. Influenza virus like particles (VLPs): opportunities for H7N9 vaccine development. Viruses. 2020; 12(5): 518. https://doi.org/10.3390/v12050518
  25. Anderson E.J., Rouphael N.G., Widge A.T., Jackson L.A., Roberts P.C., Makhene M., et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 2020; 383(25): 2427–38. https://doi.org/10.1056/nejmoa2028436
  26. Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N., et al. An mRNA vaccine against SARS-CoV-2 – preliminary report. N. Engl. J. Med. 2020; 383(20): 1920–31. https://doi.org/10.1056/nejmoa2022483
  27. Hayashi H., Sun J., Yanagida Y., Otera T., Kubota-Koketsu R., Shioda T., et al. Preclinical study of DNA vaccines targeting SARS-CoV-2. Curr. Res. Transl. Med. 2022; 70(4): 103348. https://doi.org/10.1016/j.retram.2022.103348
  28. Smith T.R.F., Patel A., Ramos S., Elwood D., Zhu X., Yan J., et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020; 11(1): 2601. https://doi.org/10.1038/s41467-020-16505-0
  29. Yu J., Tostanoski L.H., Peter L., Mercado N.B., McMahan K., Mahrokhian S.H., et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020; 369(6505): 806–11. https://doi.org/10.1126/science.abc6284

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Siniugina A.A., Lycheva N.A., Saprykina A.A., Kryshen’ K.L., Apolokhov V.D., Chernavtseva A.D., Kovpak A.A., Ivin Y.Y., Piniaeva A.N., Makarova M.N., Makarov V.G., Ishmukhametov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).