Genetic diversity of human metapneumovirus (Pneumoviridae: Metapneumovirus) in Russia: results of molecular analysis
- Authors: Fadeev A.V.1, Ivanov Y.V.1, Petrova P.A.1, Perederiy A.A.1, Pisareva M.M.1, Moshkin A.D.2, Komissarov A.B.1, Danilenko D.M.1, Lioznov D.A.1
-
Affiliations:
- A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
- Research Institute of Virology, Federal Research Center for Fundamental and Translational Medicine
- Issue: Vol 70, No 2 (2025)
- Pages: 164-176
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/310655
- DOI: https://doi.org/10.36233/0507-4088-294
- EDN: https://elibrary.ru/vfpkwg
- ID: 310655
Cite item
Abstract
Introduction. Human metapneumovirus (hMPV) holds significant epidemiological importance, being a dominant cause of lower respiratory tract infections in children under two years of age and individuals over 65. Multiple infections with hMPV throughout a person’s life are possible due to the antigenic and genetic variability of the virus. However, the genetic variability of hMPV circulating in Russia remains unexplored.
Aim of the study. The aim of this study was to test a protocol for whole-genome sequencing of hMPV to assess the genetic diversity of metapneumoviruses circulating in certain regions of Russia.
Materials and methods. Nasopharyngeal swabs were collected from patients of different ages with acute respiratory viral infections (ARVI) tested positive for hMPV using polymerase chain reaction (PCR). From some of the samples, viral isolates were obtained in cell culture. Whole-genome sequencing was performed on both swabs and isolates using the MiSeq Illumina platform, followed by phylogenetic analysis.
Results. For the first time in Russia, whole-genome sequencing of 44 hMPV strains circulating from 2017 to 2024 was conducted. Their genetic group affiliation was described, with the A2b2 clade shown to dominate. It was confirmed that the greatest variability among genes encoding viral surface proteins was observed in the G gene, while changes in the F gene were minimal during the studied period.
Conclusion. The study provides insights into the genetic diversity of hMPV strains circulating in various regions of the Russian Federation. Understanding the genetic variability of hMPV is crucial for comprehending viral evolution, transmission dynamics, and mechanisms of immune evasion, which influence the development of vaccines and antiviral drugs.
Full Text
##article.viewOnOriginalSite##About the authors
Artem V. Fadeev
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: artem.fadeev@influenza.spb.ru
ORCID iD: 0000-0003-3558-3261
Senior Researcher, Laboratory of Molecular Virology
Russian Federation, 197376, St. PetersburgYan V. Ivanov
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: ivanov.yan.vladimirovich@yandex.ru
ORCID iD: 0009-0006-0187-4000
2nd year PhD student, Laboratory of Molecular Virology
Russian Federation, 197376, St. PetersburgPolina A. Petrova
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: suddenkovapolina@gmail.com
ORCID iD: 0000-0001-8527-7946
Researcher, Laboratory of influenza viruses’ evolutionary variability
Russian Federation, 197376, St. PetersburgAlexander A. Perederiy
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: gilagalex@gmail.com
ORCID iD: 0000-0002-5961-1856
Laboratory research assistant, Laboratory of Molecular Virology
Russian Federation, 197376, St. PetersburgMaria M. Pisareva
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: maria.pisareva@influenza.spb.ru
ORCID iD: 0000-0002-1499-9957
PhD in biology, leading researcher, Laboratory of Molecular Virology
Russian Federation, 197376, St. PetersburgAlexey D. Moshkin
Research Institute of Virology, Federal Research Center for Fundamental and Translational Medicine
Email: alex.moshkin727@gmail.com
ORCID iD: 0000-0002-1182-8247
researcher
Russian Federation, 630060, NovosibirskAndrey B. Komissarov
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Author for correspondence.
Email: andrey.komissarov@influenza.spb.ru
ORCID iD: 0000-0003-1733-1255
Head of the Laboratory of Molecular Virology
Russian Federation, 197376, St. PetersburgDaria M. Danilenko
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: daria.danilenko@influenza.spb.ru
ORCID iD: 0000-0001-6174-0836
PhD in biology, Deputy Director for Research
Russian Federation, 197376, St. PetersburgDmitriy A. Lioznov
A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
Email: dmitry.lioznov@influenza.spb.ru
ORCID iD: 0000-0003-3643-7354
Doctor of Medicine Sciences, Professor, Director
Russian Federation, 197376, St. PetersburgReferences
- Uddin S., Thomas M. Human Metapneumovirus. StatPearls. StatPearls Publishing LLC; 2025.
- Sanz-Munoz I., Sanchez-de Prada L., Castrodeza-Sanz J., Eiros J.M. Microbiological and epidemiological features of respiratory syncytial virus. Rev. Esp. Quimioter. 2024; 37(3): 209–20. https://doi.org/10.37201/req/006.2024
- Cifuentes-Munoz N., Branttie J., Slaughter K.B., Dutch R.E. Human metapneumovirus induces formation of inclusion bodies for efficient genome replication and transcription. J. Virol. 2017; 91(24): e01282-17. https://doi.org/10.1128/JVI.01282-17
- Shafagati N., Williams J. Human metapneumovirus – what we know now. F1000Res. 2018; 7: 135. https://doi.org/10.12688/f1000research.12625.1
- Leyrat C., Paesen G.C., Charleston J., Renner M., Grimes J.M. Structural insights into the human metapneumovirus glycoprotein ectodomain. J. Virol. 2014; 88(19): 11611–6. https://doi.org/10.1128/JVI.01726-14
- Jesse S.T., Ludlow M., Osterhaus A.D.M.E. Zoonotic origins of human metapneumovirus: a journey from birds to humans. Viruses. 2022; 14(4): 677. https://doi.org/10.3390/v14040677
- Chang A., Masante C., Buchholz U.J., Dutch R.E. Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J. Virol. 2012; 86(6): 3230–43. https://doi.org/10.1128/JVI.06706-11
- Ribo-Molina P., van Nieuwkoop S., Mykytyn A.Z., van Run P., Lamers M.M., Haagmans B.L., et al. Human metapneumovirus infection of organoid-derived human bronchial epithelium represents cell tropism and cytopathology as observed in in vivo models. mSphere. 2024; 9(2): e0074323. https://doi.org/10.1128/msphere.00743-23
- Kinder J.T., Moncman C.L., Barrett C., Jin H., Kallewaard N., Dutch R.E. Respiratory syncytial virus and human metapneumovirus infections in three-dimensional human airway tissues expose an interesting dichotomy in viral replication, spread, and inhibition by neutralizing antibodies. J. Virol. 2020; 94(20): e01068-20. https://doi.org/10.1128/JVI.01068-20
- Herfst S., de Graaf M., Schickli J.H., Tang R.S., Kaur J., Yang C.F., et al. Recovery of human metapneumovirus genetic lineages a and B from cloned cDNA. J. Virol. 2004; 78(15): 8264–70. https://doi.org/10.1128/JVI.78.15.8264-8270.2004
- Groen K., van Nieuwkoop S., Meijer A., van der Veer B., van Kampen J.J.A., Fraaij P.L., et al. Emergence and Potential extinction of genetic lineages of human metapneumovirus between 2005 and 2021. mBio. 2023; 14(1): e0228022. https://doi.org/10.1128/mbio.02280-22
- Kahn J.S. Epidemiology of human metapneumovirus. Clin. Microbiol. Rev. 2006; 19(3): 546–57. https://doi.org/10.1128/CMR.00014-06
- van den Hoogen B.G., Herfst S., Sprong L., Cane P.A., Forleo-Neto E., de Swart R.L., et al. Antigenic and genetic variability of human metapneumoviruses. Emerg. Infect. Dis. 2004; 10(4): 658–66. https://doi.org/10.3201/eid1004.030393
- Yang C.F., Wang C.K., Tollefson S.J., Piyaratna R., Lintao L.D., Chu M., et al. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years. Virol. J. 2009; 6: 138. https://doi.org/10.1186/1743-422X-6-138
- Yang C.F., Wang C.K., Tollefson S.J., Lintao L.D., Liem A., Chu M., et al. Human metapneumovirus G protein is highly conserved within but not between genetic lineages. Arch. Virol. 2013; 158(6): 1245–52. https://doi.org/10.1007/s00705-013-1622-x
- van den Hoogen B.G., de Jong J.C., Groen J., Kuiken T., de Groot R., Fouchier R.A., et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001; 7(6): 719–24. https://doi.org/10.1038/89098
- Feng Y., He T., Zhang B., Yuan H., Zhou Y. Epidemiology and diagnosis technologies of human metapneumovirus in China: a mini review. Virol. J. 2024; 21(1): 59. https://doi.org/10.1186/s12985-024-02327-9
- Esposito S., Mastrolia M.V. Metapneumovirus infections and respiratory complications. Semin. Respir. Crit. Care Med. 2016; 37(4): 512–21. https://doi.org/10.1055/s-0036-1584800
- Hamelin M.E., Abed Y., Boivin G. Human metapneumovirus: a new player among respiratory viruses. Clin. Infect. Dis. 2004; 38(7): 983–90. https://doi.org/10.1086/382536
- Yi L., Zou L., Peng J., Yu J., Song Y., Liang L., et al. Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013–2017. Sci. Rep. 2019; 9(1): 14022. https://doi.org/10.1038/s41598-019-50340-8
- Matsuzaki Y., Itagaki T., Ikeda T., Aoki Y., Abiko C., Mizuta K. Human metapneumovirus infection among family members. Epidemiol. Infect. 2013; 141(4): 827–32. https://doi.org/10.1017/S095026881200129X
- Hacker K., Kuan G., Vydiswaran N., Chowell-Puente G., Patel M., Sanchez N., et al. Pediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua. Influenza Other Respir. Viruses. 2022; 16(6): 1112–21. https://doi.org/10.1111/irv.13034
- Howard L.M., Edwards K.M., Zhu Y., Griffin M.R., Weinberg G.A., Szilagyi P.G., et al. Clinical features of human metapneumovirus infection in ambulatory children aged 5-13 years. J. Pediatric Infect. Dis. Soc. 2018; 7(2): 165–8. https://doi.org/10.1093/jpids/pix012
- Sharipova E.V., Babachenko I.V., Orlova E.D. Metapneumovirus infection in children. Pediatr. 2020; 11(5): 13–9. https://doi.org/10.17816/PED11513-19 https://elibrary.ru/xqnxgf (in Russian)
- Lu G., Gonzalez R., Guo L., Wu C., Wu J., Vernet G., et al. Large-scale seroprevalence analysis of human metapneumovirus and human respiratory syncytial virus infections in Beijing, China. Virol. J. 2011; 8: 62. https://doi.org/10.1186/1743-422X-8-62
- Yatsyshina S.B. Pneumoviruses in human infectious diseases. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017; 94(6): 95–105. https://doi.org/10.36233/0372-9311-2017-6-95-105 https://elibrary.ru/zaddtv (in Russian)
- Sugimoto S., Kawase M., Suwa R., Kakizaki M., Kume Y., Chishiki M., et al. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J. Virol. Methods. 2023; 322: 114812. https://doi.org/10.1016/j.jviromet.2023.114812
- Groen K., van Nieuwkoop S., Bestebroer T.M., Fraaij P.L., Fouchier R.A.M., van den Hoogen B.G. Whole genome sequencing of human metapneumoviruses from clinical specimens using MinION nanopore technology. Virus Res. 2021; 302: 198490. https://doi.org/10.1016/j.virusres.2021.198490
- Aksamentov I., Roemer C., Hodcroft E., Neher R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 2021; 6(67): 3773. https://doi.org/10.21105/joss.03773
- Rambaut A., Lam T.T., Max Carvalho L., Pybus O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016; 2(1): vew007. https://doi.org/10.1093/ve/vew007
- McConnell B.S., Parker M.W. Protein intrinsically disordered regions have a non-random, modular architecture. Bioinformatics. 2023; 39(12): btad732. https://doi.org/10.1093/bioinformatics/btad732
- Parida P., Sudheesh N., Sanjay E.R., Jagadesh A., Marate S., Govindakaranavar A. The emergence of human metapneumovirus G gene duplication in hospitalized patients with respiratory tract infection, India, 2016–2018. Mol. Biol. Rep. 2023; 50(2): 1109–16. https://doi.org/10.1007/s11033-022-08092-8
- Piñana M., Vila J., Maldonado C., Galano-Frutos J.J., Valls M., Sancho J., et al. Insights into immune evasion of human metapneumovirus: novel 180- and 111-nucleotide duplications within viral G gene throughout 2014–2017 seasons in Barcelona, Spain. J. Clin. Virol. 2020; 132: 104590. https://doi.org/10.1016/j.jcv.2020.104590
- Jagusic M., Slovic A., Ivancic-Jelecki J., Ljubin-Sternak S., Vilibić-Čavlek T., Tabain I., et al. Molecular epidemiology of human respiratory syncytial virus and human metapneumovirus in hospitalized children with acute respiratory infections in Croatia, 2014–2017. Infect. Genet. Evol. 2019; 76: 104039. https://doi.org/10.1016/j.meegid.2019.104039
- Saikusa M., Kawakami C., Nao N., Takeda M., Usuku S., Sasao T., et al. 180-nucleotide duplication in the G gene of human metapneumovirus A2b subgroup strains circulating in Yokohama city, Japan, since 2014. Front. Microbiol. 2017; 8: 402. https://doi.org/10.3389/fmicb.2017.00402
- Saikusa M., Nao N., Kawakami C., Usuku S., Sasao T., Toyozawa T., et al. A novel 111-nucleotide duplication in the G gene of human metapneumovirus. Microbiol. Immunol. 2017; 61(11): 507–12. https://doi.org/10.1111/1348-0421.12543
- Yi L., Zou L., Peng J., Yu J., Song Y., Liang L., et al. Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013–2017. Sci. Rep. 2019; 9(1): 14022. https://doi.org/10.1038/s41598-019-50340-8
Supplementary files
