Analysis of changes in the genome of the Omsk hemorrhagic fever virus (Flaviviridae: Orthoflavivirus) during laboratory practices for virus preservation
- Authors: Tyulko Z.S.1,2, Fadeev A.V.3, Vasilenko A.G.1, Gradoboeva E.A.1, Yakimenko V.V.1, Komissarov A.B.3
-
Affiliations:
- Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)
- Omsk State Medical University of the Russian Ministry of Health
- Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation
- Issue: Vol 69, No 6 (2024)
- Pages: 509-523
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/277913
- DOI: https://doi.org/10.36233/0507-4088-266
- EDN: https://elibrary.ru/zfqkev
- ID: 277913
Cite item
Full Text
Abstract
Introduction. Omsk hemorrhagic fever (OHF) is a severe disease identified in the 1940s in Western Siberia, Russia. Disease is caused by the OHF virus, which belongs to the genus Orthoflavivirus.
The purpose of the work. Analysis of changes in the genome associated with the isolation of OHF virus strains in laboratory animals (Mus musculus).
Materials and methods. Whole-genome nucleotide sequences of OHF virus strains from the working collection of the laboratory of arboviral infections of the department of natural focal viral infections of the Omsk Research Institute of Natural Focal Infections of Rospotrebnadzor were used in the study, as well as sequences from GenBank. Assessment of adaptive changes in the genome of the OHF virus was carried out using discriminant analysis methods, analyzing the composition and localization of emerging substitutions in viral RNA sequences obtained during the adaptation of viruses to the mouse organism as a result of passaging. Linked nucleotide substitutions were identified by calculating the mutual information for each pair of columns in the array of aligned nucleotide sequences. In the phylogenetic analysis, the relaxed clock algorithm of the BEAST program was used.
Results. It has been shown that point substitutions during adaptation of OHF viruses to the mouse organism occur in all parts of the genome. Many of these substitutions are included in the pattern of linked substitutions identified in the genome of the OHF virus. Discriminant analysis of differences in nucleotide substitutions for groups combining sequences by the number of passages does not allow reliable discrimination between original sequences obtained from muskrat and sequences from first passages, but it recognizes well sequences from 7 or more passages, which suggests the possibility of adaptive selection of nucleotide substitutions when interacting with the body of a white mouse. Calculation of the average rate of substitutions per site per year without taking into account the occurrence of adaptive and related substitutions gives a value of 10−5, which is almost an order of magnitude different from the result when their presence is taken into account ‒ 10−4.
Conclusion. Changes in the nucleotide sequences of OHF that occur during laboratory virus preservation practices may influence the evolutionary rate values determined when analyzing these sequences and require further study.
Full Text
##article.viewOnOriginalSite##About the authors
Zhanna S. Tyulko
Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare); Omsk State Medical University of the Russian Ministry of Health
Author for correspondence.
Email: tjs@omsk-osma.ru
ORCID iD: 0000-0001-8536-0520
senior researcher, Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare); assistant professor, State budget educational institution Omsk State Medical University of the Russian Ministry of Health
Russian Federation, Omsk; OmskArtem V. Fadeev
Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation
Email: afadeew@gmail.com
ORCID iD: 0000-0003-3558-3261
senior researcher
Russian Federation, St. PetersburgAleksei G. Vasilenko
Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)
Email: Vasilenko_AG@oniipi.org
ORCID iD: 0000-0002-2754-6359
researcher, epidemiologist
Russian Federation, OmskEkaterina A. Gradoboeva
Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)
Email: Gradoboeva_EA@oniipi.org
ORCID iD: 0000-0002-2046-9872
junior researcher
Russian Federation, OmskValerii V. Yakimenko
Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)
Email: vyakimenko78@yandex.ru
ORCID iD: 0000-0001-9088-3668
head of laboratory
Russian Federation, OmskAndrey B. Komissarov
Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation
Email: a.b.komissarov@gmail.com
ORCID iD: 0000-0003-1733-1255
head of laboratory
Russian Federation, St. PetersburgReferences
- Rudakov N.V., Yastrebov V.K., Yakimenko V.V. Epidemiology of Omsk haemorragic fever. Epidemiologiya i vaktsinoprofilaktika. 2015; 14(1): 39–48. https://elibrary.ru/tkcfxf (in Russian)
- Heinze D.M., Gould E.A., Forrester N.L. Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. J. Virol. 2012; 86(16): 8663–71. https://doi.org/10.1128/jvi.01013-12
- Kovalev S.Y., Mazurina E.A. Omsk hemorrhagic fever virus is a tick-borne encephalitis virus adapted to muskrat through host-jumping. J. Med. Virol. 2022; 94(6): 2510–8. https://doi.org/10.1002/jmv.27581
- Karan L.S., Ciccozzi M., Yakimenko V.V., Lo Presti A., Cella E., Zehender G., et al. The deduced evolution history of Omsk hemorrhagic fever virus. J. Med. Virol. 2014; 86(7): 1181–7. https://doi.org/10.1002/jmv.23856
- Tyul’ko Zh.S., Yakimenko V.V. The origin of related nucleotide substitutions in the TBEV genome, determined by the viral genome structure as the result of adaptation mechanisms’ activity. Natsional’nye prioritety Rossii. 2016; (4): 103–8. https://elibrary.ru/yhxelz (in Russian)
- Lyapunova N.A., Khasnatinov M.A., Danchinova G.A. Autecological aspects of co-adaptation of TBEV and vertebrate hosts – an experimental approach. In: Voynikov V.K., ed. Mechanisms of Adaptation of Microorganisms to Various Environmental Conditions: Abstracts of the All-Russian Scientific Conference with International Participation [Mekhanizmy adaptatsii mikroorganizmov k razlichnym usloviyam sredy obitaniya: Tezisy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem]. Irkutsk; 2019: 122–5. (in Russian)
- Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003; 57(1-2): 129–46. https://doi.org/10.1016/s0166-3542(02)00206-1
- Tonteri E., Kipar A., Voutilainen L., Vene S., Vaheri A., Vapalahti O., et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One. 2013; 8(12): e81214. https://doi.org/10.1371/journal.pone.0081214
- Helmová R., Honig V., Tykalová H., Palus M., Bell-Sakyi L., Grubhoffer L. Tick-borne encephalitis virus adaptation in different host environments and existence of quasispecies. Viruses. 2020; 12(8): 902. https://doi.org/10.3390/v12080902
- Li Y., Wang D., Du X. Adaptive genetic diversifications among tick-borne encephalitis virus subtypes: A genome-wide perspective. Virology. 2019; 530: 32–8. https://doi.org/10.1016/j.virol.2019.02.006
- Simón D., Fajardo A., Sóñora M., Delfraro A., Musto H. Host influence in the genomic composition of flaviviruses: A multivariate approach. Biochem. Biophys. Res. Commun. 2017; 492(4): 572–8. https://doi.org/10.1016/j.bbrc.2017.06.088
- Villordo S.M., Carballeda J.M., Filomatori C.V., Gamarnik A.V. RNA structure duplications and flavivirus host adaptation. Trends Microbiol. 2016; 24(4): 270–83. https://doi.org/10.1016/j.tim.2016.01.002
- Yang J., Jing X., Yi W., Li X.D., Yao C., Zhang B., et al. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res. 2021; 49(3): 1567–80. https://doi.org/10.1093/nar/gkaa1250
- Chumakov M.P., Belyaeva A.P., Gagarina A.V., Slavina N.S. Isolation and study of strains of the causative agent of Omsk hemorrhagic fever. In: Endemic Viral Infections (Hemorrhagic Fevers): Proceedings of the Institute of Polio and Viral Encephalitis of the USSR Academy of Medical Sciences. Volume 7 [Endemicheskie virusnye infektsii (gemorragicheskie likhoradki): Trudy instituta poliomielita i virusnykh entsefalitov AMN SSSR. Tom 7]. Moscow: 1965: 327–44. (in Russian)
- Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv. 2013; arXiv:13033997[q-bio.GN]. https://doi.org/10.48550/arXiv.1303.3997
- Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N. et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009; 25(16): 2078–9. https://doi.org/10.1093/bioinformatics/btp352
- Grubaugh N.D., Gangavarapu K., Quick J., Matteson N.L., De Jesus J.G., Main B.J., et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019; 20(1): 8. https://doi.org/10.1186/s13059-018-1618-7
- Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3094–100. https://doi.org/10.1093/bioinformatics/bty191
- Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27(21): 2987–93. https://doi.org/10.1093/bioinformatics/btr509
- Khalafyan A.A. Textbook STATISTIKA 6. Statistical Data Analysis [Uchebnik STATISTIKA 6. Statisticheskiy analiz dannykh]. Moscow: Binom; 2007. (in Russian)
- Tyul’ko Zh.S., Yakimenko V.V. Related substitutions in the small segment of old world hantavirus genome. Voprosy virusologii. 2008; 53(3): 28–34. https://elibrary.ru/jscbxv (in Russian)
- Yang Z. PAML4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007; 24(8): 1586–91. https://doi.org/10.1093/molbev/msm088
- Bondaryuk A.N., Belykh O.I., Andaev E.I., Bukin Y.S. Inferring evolutionary timescale of Omsk hemorrhagic fever virus. Viruses. 2023; 15(7): 1576. https://doi.org/10.3390/v15071576
- Kovalev S.Y., Mazurina E.A., Yakimenko V.V. Molecular variability and genetic structure of Omsk hemorrhagic fever virus, based on analysis of the complete genome sequences. Ticks Tick Borne Dis. 2021; 12(2): 101627. https://doi.org/10.1016/j.ttbdis.2020.101627
- Lyapunova N.A. Peculiarities of tick-borne encephalitis virus reproduction in continuous cell lines of wild mammals - reservoir and accidental hosts of the virus: Diss. Kol’tsovo; 2021. (in Russian)
- Tyul’ko Zh.S., Yakimenko V.V. The nucleotide sequences variability of genomes of tick-borne encephalitis virus associated with their structure. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2012; 111(4): 27–30. https://elibrary.ru/ozhwfv (in Russian)
- Huber R.G., Lim X.N., Ng W.C., Sim A.Y.L., Poh H.X., Shen Y., et al. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun. 2019; 10(1): 1408. https://doi.org/10.1038/s41467-019-09391-8
- Dethoff E.A., Boerneke M.A., Gokhale N.S., Muhire B.M., Martin D.P., Sacco M.T., et al. Pervasive tertiary structure in the dengue virus RNA genome. Proc. Natl Acad. Sci. USA. 2018; 115(45): 11513–8. https://doi.org/10.1073/pnas.1716689115
- Yakimenko V.V., Drokin D.A., Kalmin O.B., Bogdanov I.I., Ivanov D.I. On the issue of host power-the effect on the strain variability of the tick-borne encephalitis virus. Voprosy virusologii. 1996; 41(3): 112–7. (in Russian)
- Yakimenko V.V., Mal’kova M.G., Tyul’ko ZH.S., Tkachev S.E., Makenov M.T., Vasilenko A.G. Transmissible Viral Infections of Western Siberia (Regional Aspects of Epidemiology, Environmental Pathogens and Issues of Microevolution) [Transmissivnye virusnye infektsii Zapadnoi Sibiri (regional’nye aspekty epidemiologii, ekologii vozbuditelei i voprosy mikroevolyutsii)]. Omsk: KAN; 2019. https://elibrary.ru/qhcwds (in Russian)
- Agol V.I., Gmyl A.P. Emergency services of viral RNAs: repair and remodeling. Microbiol. Mol. Biol. Rev. 2018; 82(2): e00067-17. https://doi.org/10.1128/mmbr.00067-17
- Liu J., Liu Y., Shan C., Nunes B.T.D., Yun R., Haller S.L., et al. Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nat. Commun. 2021; 12(1): 595. https://doi.org/10.1038/s41467-020-20747-3
- de Wispelaere M., Khou C., Frenkiel M.P., Desprès P., Pardigon N. A single amino acid substitution in the M protein attenuates Japanese encephalitis virus in mammalian hosts. J. Virol. 2015; 90(5): 2676–89. https://doi.org/10.1128/jvi.01176-15
- Li X.D., Shan C., Deng C.L., Ye H.Q., Shi P.Y., Yuan Z.M., et al. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl. Trop. Dis. 2014; 8(5): e2891. https://doi.org/10.1371/journal.pntd.0002891
- Ghafari M., Simmonds P., Pybus O.G., Katzourakis A. A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Curr. Biol. 2021; 31(21): 4689–96.e5. https://doi.org/10.1016/j.cub.2021.08.020
- Duchêne S., Holmes E.C., Ho S.Y.W. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc. Biol. Sci. 2014; 281(1786): 20140732. https://doi.org/10.1098/rspb.2014.0732
Supplementary files
