Analysis of changes in the genome of the Omsk hemorrhagic fever virus (Flaviviridae: Orthoflavivirus) during laboratory practices for virus preservation

Cover Image

Cite item

Full Text

Abstract

Introduction. Omsk hemorrhagic fever (OHF) is a severe disease identified in the 1940s in Western Siberia, Russia. Disease is caused by the OHF virus, which belongs to the genus Orthoflavivirus.

The purpose of the work. Analysis of changes in the genome associated with the isolation of OHF virus strains in laboratory animals (Mus musculus).

Materials and methods. Whole-genome nucleotide sequences of OHF virus strains from the working collection of the laboratory of arboviral infections of the department of natural focal viral infections of the Omsk Research Institute of Natural Focal Infections of Rospotrebnadzor were used in the study, as well as sequences from GenBank. Assessment of adaptive changes in the genome of the OHF virus was carried out using discriminant analysis methods, analyzing the composition and localization of emerging substitutions in viral RNA sequences obtained during the adaptation of viruses to the mouse organism as a result of passaging. Linked nucleotide substitutions were identified by calculating the mutual information for each pair of columns in the array of aligned nucleotide sequences. In the phylogenetic analysis, the relaxed clock algorithm of the BEAST program was used.

Results. It has been shown that point substitutions during adaptation of OHF viruses to the mouse organism occur in all parts of the genome. Many of these substitutions are included in the pattern of linked substitutions identified in the genome of the OHF virus. Discriminant analysis of differences in nucleotide substitutions for groups combining sequences by the number of passages does not allow reliable discrimination between original sequences obtained from muskrat and sequences from first passages, but it recognizes well sequences from 7 or more passages, which suggests the possibility of adaptive selection of nucleotide substitutions when interacting with the body of a white mouse. Calculation of the average rate of substitutions per site per year without taking into account the occurrence of adaptive and related substitutions gives a value of 10−5, which is almost an order of magnitude different from the result when their presence is taken into account ‒ 10−4.

Conclusion. Changes in the nucleotide sequences of OHF that occur during laboratory virus preservation practices may influence the evolutionary rate values determined when analyzing these sequences and require further study.

About the authors

Zhanna S. Tyulko

Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare); Omsk State Medical University of the Russian Ministry of Health

Author for correspondence.
Email: tjs@omsk-osma.ru
ORCID iD: 0000-0001-8536-0520

senior researcher, Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare); assistant professor, State budget educational institution Omsk State Medical University of the Russian Ministry of Health

Russian Federation, Omsk; Omsk

Artem V. Fadeev

Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation

Email: afadeew@gmail.com
ORCID iD: 0000-0003-3558-3261

senior researcher

Russian Federation, St. Petersburg

Aleksei G. Vasilenko

Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)

Email: Vasilenko_AG@oniipi.org
ORCID iD: 0000-0002-2754-6359

researcher, epidemiologist

Russian Federation, Omsk

Ekaterina A. Gradoboeva

Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)

Email: Gradoboeva_EA@oniipi.org
ORCID iD: 0000-0002-2046-9872

junior researcher

Russian Federation, Omsk

Valerii V. Yakimenko

Omsk Research Institute of Natural Focal Infections (Federal Service for Supervision of Consumer Rights Protection and Human Welfare)

Email: vyakimenko78@yandex.ru
ORCID iD: 0000-0001-9088-3668

head of laboratory

Russian Federation, Omsk

Andrey B. Komissarov

Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation

Email: a.b.komissarov@gmail.com
ORCID iD: 0000-0003-1733-1255

head of laboratory

Russian Federation, St. Petersburg

References

  1. Rudakov N.V., Yastrebov V.K., Yakimenko V.V. Epidemiology of Omsk haemorragic fever. Epidemiologiya i vaktsinoprofilaktika. 2015; 14(1): 39–48. https://elibrary.ru/tkcfxf (in Russian)
  2. Heinze D.M., Gould E.A., Forrester N.L. Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. J. Virol. 2012; 86(16): 8663–71. https://doi.org/10.1128/jvi.01013-12
  3. Kovalev S.Y., Mazurina E.A. Omsk hemorrhagic fever virus is a tick-borne encephalitis virus adapted to muskrat through host-jumping. J. Med. Virol. 2022; 94(6): 2510–8. https://doi.org/10.1002/jmv.27581
  4. Karan L.S., Ciccozzi M., Yakimenko V.V., Lo Presti A., Cella E., Zehender G., et al. The deduced evolution history of Omsk hemorrhagic fever virus. J. Med. Virol. 2014; 86(7): 1181–7. https://doi.org/10.1002/jmv.23856
  5. Tyul’ko Zh.S., Yakimenko V.V. The origin of related nucleotide substitutions in the TBEV genome, determined by the viral genome structure as the result of adaptation mechanisms’ activity. Natsional’nye prioritety Rossii. 2016; (4): 103–8. https://elibrary.ru/yhxelz (in Russian)
  6. Lyapunova N.A., Khasnatinov M.A., Danchinova G.A. Autecological aspects of co-adaptation of TBEV and vertebrate hosts – an experimental approach. In: Voynikov V.K., ed. Mechanisms of Adaptation of Microorganisms to Various Environmental Conditions: Abstracts of the All-Russian Scientific Conference with International Participation [Mekhanizmy adaptatsii mikroorganizmov k razlichnym usloviyam sredy obitaniya: Tezisy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem]. Irkutsk; 2019: 122–5. (in Russian)
  7. Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003; 57(1-2): 129–46. https://doi.org/10.1016/s0166-3542(02)00206-1
  8. Tonteri E., Kipar A., Voutilainen L., Vene S., Vaheri A., Vapalahti O., et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One. 2013; 8(12): e81214. https://doi.org/10.1371/journal.pone.0081214
  9. Helmová R., Honig V., Tykalová H., Palus M., Bell-Sakyi L., Grubhoffer L. Tick-borne encephalitis virus adaptation in different host environments and existence of quasispecies. Viruses. 2020; 12(8): 902. https://doi.org/10.3390/v12080902
  10. Li Y., Wang D., Du X. Adaptive genetic diversifications among tick-borne encephalitis virus subtypes: A genome-wide perspective. Virology. 2019; 530: 32–8. https://doi.org/10.1016/j.virol.2019.02.006
  11. Simón D., Fajardo A., Sóñora M., Delfraro A., Musto H. Host influence in the genomic composition of flaviviruses: A multivariate approach. Biochem. Biophys. Res. Commun. 2017; 492(4): 572–8. https://doi.org/10.1016/j.bbrc.2017.06.088
  12. Villordo S.M., Carballeda J.M., Filomatori C.V., Gamarnik A.V. RNA structure duplications and flavivirus host adaptation. Trends Microbiol. 2016; 24(4): 270–83. https://doi.org/10.1016/j.tim.2016.01.002
  13. Yang J., Jing X., Yi W., Li X.D., Yao C., Zhang B., et al. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res. 2021; 49(3): 1567–80. https://doi.org/10.1093/nar/gkaa1250
  14. Chumakov M.P., Belyaeva A.P., Gagarina A.V., Slavina N.S. Isolation and study of strains of the causative agent of Omsk hemorrhagic fever. In: Endemic Viral Infections (Hemorrhagic Fevers): Proceedings of the Institute of Polio and Viral Encephalitis of the USSR Academy of Medical Sciences. Volume 7 [Endemicheskie virusnye infektsii (gemorragicheskie likhoradki): Trudy instituta poliomielita i virusnykh entsefalitov AMN SSSR. Tom 7]. Moscow: 1965: 327–44. (in Russian)
  15. Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv. 2013; arXiv:13033997[q-bio.GN]. https://doi.org/10.48550/arXiv.1303.3997
  16. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N. et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009; 25(16): 2078–9. https://doi.org/10.1093/bioinformatics/btp352
  17. Grubaugh N.D., Gangavarapu K., Quick J., Matteson N.L., De Jesus J.G., Main B.J., et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019; 20(1): 8. https://doi.org/10.1186/s13059-018-1618-7
  18. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3094–100. https://doi.org/10.1093/bioinformatics/bty191
  19. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27(21): 2987–93. https://doi.org/10.1093/bioinformatics/btr509
  20. Khalafyan A.A. Textbook STATISTIKA 6. Statistical Data Analysis [Uchebnik STATISTIKA 6. Statisticheskiy analiz dannykh]. Moscow: Binom; 2007. (in Russian)
  21. Tyul’ko Zh.S., Yakimenko V.V. Related substitutions in the small segment of old world hantavirus genome. Voprosy virusologii. 2008; 53(3): 28–34. https://elibrary.ru/jscbxv (in Russian)
  22. Yang Z. PAML4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007; 24(8): 1586–91. https://doi.org/10.1093/molbev/msm088
  23. Bondaryuk A.N., Belykh O.I., Andaev E.I., Bukin Y.S. Inferring evolutionary timescale of Omsk hemorrhagic fever virus. Viruses. 2023; 15(7): 1576. https://doi.org/10.3390/v15071576
  24. Kovalev S.Y., Mazurina E.A., Yakimenko V.V. Molecular variability and genetic structure of Omsk hemorrhagic fever virus, based on analysis of the complete genome sequences. Ticks Tick Borne Dis. 2021; 12(2): 101627. https://doi.org/10.1016/j.ttbdis.2020.101627
  25. Lyapunova N.A. Peculiarities of tick-borne encephalitis virus reproduction in continuous cell lines of wild mammals - reservoir and accidental hosts of the virus: Diss. Kol’tsovo; 2021. (in Russian)
  26. Tyul’ko Zh.S., Yakimenko V.V. The nucleotide sequences variability of genomes of tick-borne encephalitis virus associated with their structure. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2012; 111(4): 27–30. https://elibrary.ru/ozhwfv (in Russian)
  27. Huber R.G., Lim X.N., Ng W.C., Sim A.Y.L., Poh H.X., Shen Y., et al. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun. 2019; 10(1): 1408. https://doi.org/10.1038/s41467-019-09391-8
  28. Dethoff E.A., Boerneke M.A., Gokhale N.S., Muhire B.M., Martin D.P., Sacco M.T., et al. Pervasive tertiary structure in the dengue virus RNA genome. Proc. Natl Acad. Sci. USA. 2018; 115(45): 11513–8. https://doi.org/10.1073/pnas.1716689115
  29. Yakimenko V.V., Drokin D.A., Kalmin O.B., Bogdanov I.I., Ivanov D.I. On the issue of host power-the effect on the strain variability of the tick-borne encephalitis virus. Voprosy virusologii. 1996; 41(3): 112–7. (in Russian)
  30. Yakimenko V.V., Mal’kova M.G., Tyul’ko ZH.S., Tkachev S.E., Makenov M.T., Vasilenko A.G. Transmissible Viral Infections of Western Siberia (Regional Aspects of Epidemiology, Environmental Pathogens and Issues of Microevolution) [Transmissivnye virusnye infektsii Zapadnoi Sibiri (regional’nye aspekty epidemiologii, ekologii vozbuditelei i voprosy mikroevolyutsii)]. Omsk: KAN; 2019. https://elibrary.ru/qhcwds (in Russian)
  31. Agol V.I., Gmyl A.P. Emergency services of viral RNAs: repair and remodeling. Microbiol. Mol. Biol. Rev. 2018; 82(2): e00067-17. https://doi.org/10.1128/mmbr.00067-17
  32. Liu J., Liu Y., Shan C., Nunes B.T.D., Yun R., Haller S.L., et al. Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nat. Commun. 2021; 12(1): 595. https://doi.org/10.1038/s41467-020-20747-3
  33. de Wispelaere M., Khou C., Frenkiel M.P., Desprès P., Pardigon N. A single amino acid substitution in the M protein attenuates Japanese encephalitis virus in mammalian hosts. J. Virol. 2015; 90(5): 2676–89. https://doi.org/10.1128/jvi.01176-15
  34. Li X.D., Shan C., Deng C.L., Ye H.Q., Shi P.Y., Yuan Z.M., et al. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl. Trop. Dis. 2014; 8(5): e2891. https://doi.org/10.1371/journal.pntd.0002891
  35. Ghafari M., Simmonds P., Pybus O.G., Katzourakis A. A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Curr. Biol. 2021; 31(21): 4689–96.e5. https://doi.org/10.1016/j.cub.2021.08.020
  36. Duchêne S., Holmes E.C., Ho S.Y.W. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc. Biol. Sci. 2014; 281(1786): 20140732. https://doi.org/10.1098/rspb.2014.0732

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic tree constructed based on the coding part of the nucleotide sequence of OHF viruses. Bootstrap values are indicated for tree nodes. The sequences belong to the main subtypes of the OHF virus: OHFV-1, OHFV-2, OHFV-3.

Download (313KB)
3. Fig. 2. The number of different nucleotides when comparing the coding sequences of OHF viruses. The number of different nucleotides is indicated on the arrows in the diagram.

Download (132KB)
4. Fig. 3. Scatterplot for mRNA nucleotide sequences of the OHF viruses in space, where the coordinates along the horizontal axis are the values of the discriminant function f1, and along the vertical axis the values of the discriminant function f2, calculated for each viral nucleotide sequence. 0 ‒ sequences obtained from muskrat and sequences of the 0 passage in the body of a white mouse; 1п ‒sequences of the first passage in the body of a white mouse; 2п ‒sequences of the second passage in the body of a white mouse.

Download (75KB)
5. Fig. 4. Scatterplot for mRNA nucleotide sequences of the OHF viruses in space, where the coordinates along the horizontal axis are the values of the discriminant function f1, and along the vertical axis the values of the discriminant function f2, calculated for each viral nucleotide sequence 0 ‒ sequences obtained from muskrat; 0п ‒sequences of the 0 passage in the body of a white mouse; 1п ‒ sequences of the first passage in the body of a white mouse; 2п ‒ sequences of the second passage in the body of a white mouse; 3п ‒ sequences of the third passage in the body of a white mouse; 4+ ‒ sequences of the fourth and higher number of passages in the body of a white mouse; x ‒ sequences with an unknown number of passages.

Download (196KB)
6. Supplementary to the article
Download (483KB)

Copyright (c) 2024 Tyulko Z.S., Fadeev A.V., Vasilenko A.G., Gradoboeva E.A., Yakimenko V.V., Komissarov A.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».