Unusual BA222-like strains of Rotavirus A (Sedoreoviridae: Rotavirus: Rotavirus A): molecular and genetic analysis based on all genome segments
- Authors: Velikzhanina E.I.1, Sashina T.A.1, Morozova O.V.1, Kashnikov A.Y.1, Epifanova N.V.1, Novikova N.A.1
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
- Issue: Vol 69, No 4 (2024)
- Pages: 363-376
- Section: ORIGINAL RESEARCH
- URL: https://journals.rcsi.science/0507-4088/article/view/265992
- DOI: https://doi.org/10.36233/0507-4088-254
- EDN: https://elibrary.ru/ogoquq
- ID: 265992
Cite item
Abstract
Introduction. Rotavirus infection is the major cause of severe dehydrating diarrhea requiring hospitalization in young children worldwide. Due to their segmented genome, rotaviruses are capable of gene reassortment, which makes the emergence and spread of genetically novel strains possible. The purpose of this study was to search for unusual rotaviruses circulating in Nizhny Novgorod in 2021‒2023 and their molecular genetic characterization based on all genome segments.
Materials and methods. Rotavirus-positive stool samples of children were examined by PCR genotyping and electrophoresis in PAAG. cDNA fragments of each of the 11 genes (VP1‒VP4, VP6, VP7, NSP1‒NSP5), 570 to 850 nucleotide pairs in length were sequenced for the selected strains. The phylogenetic analysis was performed in the MEGA X program.
Results. In the study period 2021‒2023, 11 G[P] combinations with a predominance of G3P[8] (59.5%) were identified. Six atypical Rotavirus А (RVA) strains were identified: 2 strains of the G2P[4] genotype (G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E2-H3, G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E3-H2) and 4 G3P[9] strains (all strains had the genotype G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3). Phylogenetic analysis based on all genes showed an evolutionary relationship between rotaviruses similar to rotaviruses of cats and dogs (BA222-like) and unusual strains of the G2P[4] genotype, for which a mixed combination of genotypes was identified and characterized for the first time.
Discussion. The results obtained expand the understanding of the diversity of reassortant RVAs, as well as complement the data on the genotypic structure of the rotavirus population in Nizhny Novgorod.
Conclusion. The wide genetic diversity of reassortant RVA can help rotaviruses overcome the immunological pressure provided by natural and vaccine-induced immunity. In this regard, to control the emergence of new variants and assess changes in the virulence of rotaviruses after reassortment processes, continuous molecular monitoring for circulating RVA is necessary.
Full Text
##article.viewOnOriginalSite##About the authors
Elena I. Velikzhanina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Author for correspondence.
Email: www.e_velikzhanina@mail.ru
ORCID iD: 0000-0003-4069-1427
Junior Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodTatiana A. Sashina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Email: tatyana.sashina@gmail.com
ORCID iD: 0000-0003-3203-7863
PhD, Senior Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodOlga V. Morozova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Email: Olga.morozova.bsc@gmail.com
ORCID iD: 0000-0002-8058-8187
PhD, Senior Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodAlexander Yu. Kashnikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Email: a.kashn@yandex.ru
ORCID iD: 0000-0003-1033-7347
Research assistant, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodNatalia V. Epifanova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Email: epifanovanv@mail.ru
ORCID iD: 0000-0001-7679-8029
PhD, Leading Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodNadezhda A. Novikova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Email: novikova_na@mail.ru
ORCID iD: 0000-0002-3710-6648
Professor. Head of the laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodReferences
- GBD 2016 Diarrheal Disease Collaborators. Estimates of the global, regional, and national morbidity, mortality, and etiologies of diarrhea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018; 18(11): 1211–28. https://doi.org/10.1016/S1473-3099(18)30362-1
- Troeger С., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr. 2018; 172(10): 958–65. https://doi.org/10.1001/jamapediatrics.2018.1960
- Sindhu K.N., Babji S., Ganesan S. Impact of rotavirus vaccines in low and middle-income countries. Curr. Opin. Infect. Dis. 2017; 30(5): 473–81. https://doi.org/10.1097/QCO.0000000000000397
- State Report «On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2022». Moscow; 2023. (in Russian)
- State report «On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2023». Moscow; 2024. (in Russian)
- Rixon F., Taylor P., Desselberger U. Rotavirus RVA segments sized by electron microscopy. J. Gen. Virol. 1984; 56(1): 233–9. https://doi.org/10.1099/0022-1317-65-1-233
- Estes M.K., Kapikian A.Z. Rotaviruses. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007: 1917–73.
- Estes M.K., Greenberg H.B. Rotaviruses. In: Knipe D.M., Howley P.M. eds. Fields Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013: 1347–1401.
- Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Banyai K., Estes M.K., et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008; 153(8): 1621–9. https://doi.org/10.1007/s00705-008-0155-1
- RCWG. Rotavirus classification working group; 2024. Available at: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
- Matthijnssens J., Heylen E., Zeller M., Rahman M., Lemey P., Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 2010; 27(10): 2431–6. https://doi.org/10.1093/molbev/msq137
- Maes P., Matthijnssens J., Rahman M., Van Ranst M. Rota C: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol. 2009; 9: 238. https://doi.org/10.1186/1471 2180-9-238
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol. 2017; 162(8): 2387–92. https://doi.org/10.1007/s00705-017-3364-7
- Kiseleva V., Faizuloev E., Meskina E., Marova A., Oksanich A., Samartseva T., et al. Molecular-genetic characterization of human rotavirus A strains circulating in Moscow, Russia (2009–2014). Virol. Sin. 2018; 33(4): 304–13. https://doi.org/10.1007/s12250-018-0043-0
- Doro R., Laszlo B., Martella V., Leshem E., Gentsch J., Parashar U., et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 2014; 28: 446–61. https://doi.org/10.1016/j.meegid.2014.08.017
- Santos N., Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol. 2005; 15(1): 29–56. https://doi.org/10.1002/rmv.448
- Matthijnssens J., Ciarlet M., Heiman E., Arijs I., Delbeke T., Mcdonald S.M., et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol. 2008; 82(7): 3204–19. https://doi.org/10.1128/JVI.02257-07
- Heiman E.M., Mcdonald S.M., Barro M., Taraporewala Z.F., Bar-Magen T. Ndpatton J.T. Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J. Virol. 2008; 82(22): 11106–16. https://doi.org/10.1128/JVI.01402-08
- Uprety T., Wang D., Li F. Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch. Virol. 2021; 166(9): 2369–86. https://doi.org/10.1007/s00705-021-05142-7
- Nakagomi O., Ohshima A., Aboudy Y., Shif I., Mochizuki M., Nakagomi T., et al. Molecular identification by RNA-RNA hybridization of a human rotavirus that is closely related to rotaviruses of feline and canine origin. J. Clin. Microbiol. 1990; 28(6): 1198–203. https://doi.org/10.1128/jcm.28.6.1198-1203.1990
- Matthijnssens J., Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr. Opin. Virol. 2012; 2(4): 426–33. https://doi.org/10.1016/j.coviro.2012.04.007
- Nakagomi T., Nakagomi O. RNA-RNA hybridization identifies a human rotavirus that is genetically related to feline rotavirus. J. Virol. 1989; 63(3): 1431–4. https://doi.org/10.1128/JVI.63.3.1431-1434.1989
- Tsugawa T., Rainwater-Lovett K., Tsutsumi H. Human G3P[9] rotavirus strains possessing an identical genotype constellation to AU-1 isolated at high prevalence in Brazil, 1997–1999. J. Gen. Virol. 2015; 96(Pt. 3): 590–600. https://doi.org/10.1099/vir.0.071373-0
- Cook N., Bridger J., Kendall K., Gomara M.I., El-Attar L., Gray J. The zoonotic potential of rotavirus. J. Infect. 2004; 48(4): 289–302. https://doi.org/10.1016/j.jinf.2004.01.018
- Jain S., Vashistt J., Changotra H. Rotaviruses: is their surveillance needed? Vaccine. 2014; 32(27): 3367–78. https://doi.org/10.1016/j.vaccine.2014.04.037 Novikova N.A., Sashina T.A., Epifanova N.V., Kashnikov A.U., Morozova O.V. Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984–2019. Arch. Virol. 2020; 165(4): 865–75. https://doi.org/10.1007/s00705-020-04553-2
- Gouvea V., Glass R.I., Woods P., Taniguchi K., Clark H.F., Forrester B., et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J. Clin. Microbiol. 1990; 28(2): 276–82. https://doi.org/10.1128/jcm.28.2.276-282.1990
- Gentsch J.R., Glass R.I., Woods P., Gouvea V., Gorziglia M., Flores J., et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J. Clin. Microbiol. 1992; 30(6): 1365–73. https://doi.org/10.1128/jcm.30.6.1365-1373.1992
- Maunula L., von Bonsdorff C.H. Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9. J. Gen. Virol. 1998; 79(Pt. 2): 321–32. https://doi.org/10.1099/0022-1317-79-2-321
- Iturriza-Gómara M., Isherwood B., Desselberger U., Gray J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J. Virol. 2001; 75(8): 3696–705. https://doi.org/10.1128/JVI.75.8.3696-3705.2001
- Iturriza-Gómara M., Kang G., Gray J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J. Clin. Virol. 2004; 31(4): 259–65. https://doi.org/10.1016/j.jcv.2004.04.009
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Genotype constellations of the rotavirus A strains circulating in Nizhny Novgorod, Russia, 2017-2018. Infect. Genet. Evol. 2020; 85: 104578. https://doi.org/10.1016/j.meegid.2020.104578
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980; 16(2): 111–20. https://doi.org/10.1007/BF01731581
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. https://doi.org/10.1093/molbev/msy096
- Rahman M., Matthijnssens J., Yang X., Delbeke T., Arijs I., Taniguchi K., et al. Evolutionary history and global spread of the emerging g12 human rotaviruses. J. Virol. 2007; 81(5): 2382–90. https://doi.org/10.1128/JVI.01622-06
- Mukherjee A., Dutta D., Ghosh S., Bagchi P., Chattopadhyay S., Nagashima S., et al. Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Arch. Virol. 2009; 154(5): 733–46. https://doi.org/10.1007/s00705-009-0363-3
- Ndze V.N., Esona M.D., Achidi E.A., Gonsu K.H., Doro R., Marton S., et al. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010-2011: diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect. Genet. Evol. 2014; 28: 537–60. https://doi.org/10.1016/j.meegid.2014.10.009
- Wang Y.H., Pang B.B., Ghosh S., Zhou X., Shintani T., Urushibara N., et al. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One. 2014; 9(3): e88850. https://doi.org/10.1371/journal.pone.0088850
- Agbemabiese C.A., Nakagomi T., Doan Y.H., Nakagomi O. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan. Infect. Genet. Evol. 2015; 35: 184–93. https://doi.org/10.1016/j.meegid.2015.07.033
- Sashina T.A., Velikzhanina E.I., Morozova O.V., Epifanova N.V., Novikova N.A. Detection and full-genotype characterization of rare and reassortant Rotavirus A strains in Nizhny Novgorod, European part of Russia. Arch. Virol. 2023; 168(8): 215. https://doi.org/10.1007/s00705-023-05838-y
- Morozova O.V., Sashina T.A., Epifanova N.V., Velikzhanina E.I., Novikova N.A. Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia). Braz. J. Microbiol. 2023; 54(4): 2867–77. https://doi.org/10.1007/s42770-023-01155-3
- Novikova N.A., Sashina T.A., Solntsev L.A., Epifanova N.V., Kashnikov A.Yu., Pogodina L.V., et al. Manifestations of epidemic process of rotavirus infection in Nizhny Novgorod in pre-vaccination period. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2017; 94(5): 46–52. https://doi.org/10.36233/0372-9311-2017-5-46-52 https://elibrary.ru/ysqaeq (in Russian)
- Morozova O.V., Sashina T.A., Novikova N.A. Detection and molecular characterization of reassortant DS-1-like G1P[8] strains of rotavirus A. Voprosy virusologii. 2017; 62(2): 91–6. https://doi.org/10.18821/0507-4088-2017-62-2-91-96 https://elibrary.ru/yjkhhh
- Sashina T.A., Morozova O.V., Epifanova N.V., Kashnikov A.U., Leonov A.V., Novikova N.A. Molecular monitoring of the rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012–2020): detection of the strains with the new genetic features. Voprosy virusologii. 2021; 66(2): 140–51. https://doi.org/10.36233/0507-4088-46 https://elibrary.ru/azvpec (in Russian)
- Martella V., Ciarlet M., Camarda A., Pratelli A., Tempesta M., Greco G. et al. Molecular characterization of the VP4, VP6, VP7, and NSP4 genes of lapine rotaviruses identified in Italy: emergence of a novel VP4 genotype. Virology. 2003; 314(1): 358–70. https://doi.org/10.1016/s0042-6822(03)00418-5
- Grant L., Esona M., Gentsch J., Watt J., Reid R., Weatherholtz R., et al. Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. J. Med. Virol. 2011; 83(7): 1288–99. https://doi.org/10.1002/jmv.22076
- Nakagomi O., Kaga E. Distinctness of NSP1 gene of human rotavirus AU-1 from NSP1 gene of other human genogroups. Res. Virol. 1995; 146(6): 423–8. https://doi.org/10.1016/0923-2516(96)80902-2
- Theamboonlers A., Veravigrom M., Yambangyang O., Trairatvorakul P., Chongsrisawat V., Poovorawan Y. The incidence of rotavirus a isolates of G genotype in Thailand in 2002–2004. Acta Virol. 2005; 49(2): 111–5.
- Martella V.A., Potgieter C., Lorusso E., De Grazia S., Giammanco G.M., Matthijnssens J., et al. A feline rotavirus G3P[9] carries traces of multiple reassortment events and resembles rare human G3P[9] rotaviruses. J. Gen. Virol. 2011; 92(Pt. 5): 1214–21. https://doi.org/10.1099/vir.0.027425-0
- Matthijnssens J., Ciarlet M., Mcdonald S.M., Attoui H., Banyai K., Brister J.R. et al. Uniformity of rotavirus strain nomenclature proposed by the rotavirus classification working group (RCWG). Arch. Virol. 2011; 156(8): 1397–413. https://doi.org/10.1007/s00705-011-1006-z
- Theamboonlers A., Maiklang O., Thongmee T., Chieochansin T., Vuthitanachot V., Poovorawan Y. Complete genome analysis of a rare human G3P[9] rotavirus posing as an AU-1 like strain. Springerplus. 2013; 2: 569. https://doi.org/10.1186/2193-1801-2-569
- Wang Y.H., Pang B.B., Zhou X., Ghosh S., Tang W.F. Peng J.S., et al. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. Infect. Genet. Evol. 2013; 16: 103–12. https://doi.org/10.1016/j.meegid.2013.01.016
- Sanchez-Fauquier A., Montero V., Moreno S., Sole M., Colomina J., Iturriza-Gomara M., et al. Human rotavirus G9 and G3 as major cause of diarrhea in hospitalized children, Spain. Emerg. Infect. Dis. 2006; 12(10): 1536–41. https://doi.org/10.3201/eid1210.060384
- Khamrin P., Maneekarn N., Peerakome S., Tonusin S., Phan T.G., Okitsu S., et al. Molecular characterization of rare G3P[9] rotavirus strains isolated from children hospitalized with acute gastroenteritis. J. Med. Virol. 2007; 79(6): 843–51. https://doi.org/10.1002/jmv.20840
- Inoue Y., Kitahori Y. Rare group a rotavirus G3P[9] isolated in Nara Prefecture, Japan. Jpn J. Infect. Dis. 2006; 59(2): 139–40.
- Iizuka M., Chiba M., Masamune O., Kaga E., Nakagomi T., Nakagomi O. A highly conserved genomic RNA constellation of Japanese isolates of human rotaviruses carrying G serotype 3 and P serotype 9. Res. Virol. 1994; 145(1): 21–4. https://doi.org/10.1016/s0923-2516(07)80003-3
- Griffin D.D., Nakagomi T., Hoshino Y., Nakagomi O., Kirkwood C.D., Parashar U.D., et al. Characterization of nontypeable rotavirus strains from the United States: identification of a new rotavirus reassortant (P2A[6], G12) and rare P3[9] strains related to bovine rotaviruses. Virology. 2002; 294(2): 256–69. https://doi.org/10.1006/viro.2001.1333
- Gollop R., Nakagomi O., Silberstein I., Shulman L.M., Greenberg H.B., Mendelson E., et al. Three forms of AU-1 like human rotaviruses differentiated by their overall genomic constellation and by the sequence of their VP8*. Arch. Virol. 1998; 143(2): 263–77. https://doi.org/10.1007/s007050050285
- Kaga E., Iizuka M., Nakagomi T., Nakagomi O. The distribution of G (VP7) and P (VP4) serotypes among human rotaviruses recovered from Japanese children with diarrhea. Microbiol. Immunol. 1994; 38(4): 317–20. https://doi.org/10.1111/j.1348-0421.1994.tb01784.x
- Sashina T.A., Morozova O.V., Novikova N.A. G/[P]-types of rotavirus A in Nizhny Novgorod: 2012-2014. Infektsiya i immunitet. 2014; 4(1): 91. https://elibrary.ru/vzqyan (in Russian)
- Novikova N.A., Ponomareva N.V., Novikov D.V., Prilipov A.G., Epifanova N.V., Golitsyna L.N. Nucleotide sequence analysis of the nsp4 gene from group a rotavirus-es isolated in Nizhni Novgorod. Voprosy virusologii. 2008; 53(6): 35–9. https://elibrary.ru/kaxfub (in Russian)
- Nakagomi O., Nakagomi T., Oyamada H., Suto T. Relative frequency of human rotavirus subgroups 1 and 2 in Japanese children with acute gastroenteritis. J. Med. Virol. 1985; 17(1): 29–34. https://doi.org/10.1002/jmv.1890170105
- Nakagomi O., Nakagomi T. Molecular evidence for naturally occurring single VP7 gene substitution reassortant between human rotaviruses belonging to two different genogroups. Arch. Virol. 1991; 119(1-2): 67–81. https://doi.org/10.1007/BF01314324
- Nakagomi O., Nakagomi T. Molecular epidemiology of human rotaviruses: genogrouping by RNA–RNA hybridization. Arch. Virol. 1996; 12: 93–8. https://doi.org/10.1007/978-3-7091-6553-9_11
- De Grazia S., Giammanco G.M., Potgieter C.A., Matthijnssens J., Banyai K., Platia M.A., et al. Unusual assortment of segments in 2 rare human rotavirus genomes. Emerg. Infect. Dis. 2010; 16(5): 859–62. https://doi.org/10.3201/eid1605.091826
- Banyai K., Laszlo B., Duque J., Steele A.D., Nelson E. Anthony S., et al. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012; 30(1): 122–30. https://doi.org/10.1016/j.vaccine.2011.09.111
- Tsugawa T., Hoshino Y. Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology. 2008; 380(2): 344–53. https://doi.org/10.1016/j.virol.2008.07.041
- Cao M., Yuan F., Zhang W., Wang X., Ma J., Ma X., et al. Genomic analysis of two rare human G3P[9] rotavirus strains in Ningxia, China. Infect. Genet. Evol. 2023; 116: 105518. https://doi.org/10.1016/j.meegid.2023.105518
- Mijatovic-Rustempasic S., Roy S., Sturgeon M., Rungsrisuriyachai K., Esona M.D., Degroat D., et al. Full-genome sequence of a rare human G3P[9] rotavirus strain. Genome Announc. 2014; 2(2): e00143–14. https://doi.org/10.1128/genomeA.00143-14
- Jeong S., Lim I., Kim W. Whole-genome analysis of a rare human Korean G3P[9] rotavirus strain suggests a complex evolutionary origin potentially in evolving reassortment events between feline and bovine rotaviruses. PLoS One. 2014; 9(5): e97127. https://doi.org/10.1371/journal.pone.0097127
Supplementary files
